首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
含酚废水来源广、数量多,对人体和动植物都有很大的危害,因此..必须对舍酚废水进行有效的处理。综述了含酚废水的处理技术和处理结果,特别是对生物法处理含酚废水的现状与发展进行了介绍和评述。  相似文献   

2.
3.
ABSTRACT: This paper reviews the processes that occurred during an application of the Metropolitan Water District (MWD)-MAIN water use forecasting system for the City of Salinas, California. The review includes an analysis of sources of available data, methods for estimating input data, calibration, and verification of the MWD-MAIN System, and an evaluation of the reliability of system output. We found that inexperienced users can have difficulty understanding the level of skill, knowledge, and amount of data that are required to produce reliable forecasts. Some of the issues associated with application of the MWD-MAIN System include the following:
  • ? All input data needed for accurate forecasts simply are not available for many cities and towns.
  • ? The data requirements are more extensive than many users anticipate.
  • ? Substantial requirements for manipulation of input data produces opportunity for error that creates major time demands in troubleshooting.
  • ? Calibration and verification for specific uses can be substantially more difficult than is readily apparent from the guidance manual.
  • ? Independent validity checks need to be done to validate system output.
  • ? If specified calibrating procedures do not produce reasonable results, reestimating slope coefficients is an option, but this requires resources and expertise that can easily exceed the limits of most users.
These are problems typical of most complex models. Reviews such as this can help users to appreciate the level of data required, and to use the MWD-MAIN System in a more effective and efficient manner.  相似文献   

4.
One of the problems which often arises in engineering hydrology is to estimate data at a given site because either the data are missing or the site is ungaged. Such estimates can be made by spatial interpolation of data available at other sites. A number of spatial interpolation techniques are available today with varying degrees of complexity. It is the intent of this paper to compare the applicability of various proposed interpolation techniques for estimating annual precipitation at selected sites. The interpolation techniques analyzed include the commonly used Thiessen polygon, the classical polynomial interpolation by least-squares or Lagrange approach, the inverse distance technique, the multiquadric interpolation, the optimal interpolation and the Kriging technique. Thirty years of annual precipitation data at 29 stations located in the Region II of the North Central continental United States have been used for this study. The comparison is based on the error of estimates obtained at five selected sites. Results indicate that the Kriging and optimal interpolation techniques are superior to the other techniques. However, the multiquadric technique is almost as good as those two. The inverse distance interpolation and the Thiessen polygon gave fairly satisfactory results while the polynomial interpolation did not produce good results.  相似文献   

5.
通过对几种含油污泥无害化处理技术的比选,分析不同处理技术物耗、能耗情况,优选出经济有效的含油污泥焚烧技术,结合新疆油田含油污泥的特点,采用层燃螺旋炉排焚烧技术,利用其燃烧热能生产蒸汽用于原油生产,采用余热吸收急冷与碱液半干法除酸技术,有效控制了二次污染;采用布袋除尘与烟尘固化技术确保了烟气达标排放。年节省成本支出3095.88万元。  相似文献   

6.
ABSTRACT: Near real time daily rainfall estimates for the UK are available from three sources: a sparse network of gauges, radar data, or radar data adjusted by the sparse gauges. The PARAGON rainfall archive system, which has been developed by the UK Meteorological Office, is able to produce these estimates in near real time on a 5 km grid. The ability of these estimates to reproduce the 5 km grid point field derived later from a dense network of gauges is compared using case studies. Five techniques have been used to assess the relative quality of the various estimates. There is general agreement between the results of the various techniques. For the London radar there are examples of days when the rainfall estimate was improved by incorporating radar data; conversely, there are days when the radar data make it worse. Overall little evidence was found to suggest that adjusted radar data are consistently markedly better than gauge estimates. Discriminate use of radar data is recommended.  相似文献   

7.
Protecting biodiversity on public lands is difficult, requiring the management of a complex array of factors. This is especially true when the ecosystems in question are affected by, or extend onto, lands outside the boundaries of the protected area. In this article we review recent developments in the cross-boundary management of protected natural resources, such as parks, wildlife reserves, and designated wilderness areas. Five ecological and 11 anthropic techniques have been suggested for use in cross-boundary management. The categories are not mutually exclusive, but each is a distinct and representative approach, suggested by various authors from academic, managerial, and legal professions. The ecological strategies stress the collection of basic data and documentation of trends. The anthropic techniques stress the usefulness of cooperative guidelines and the need to develop a local constituency which supports park goals. However, the situation is complex and the needed strategies are often difficult to implement. Diverse park resources are influenced by events in surrounding lands. The complexity and variability of sources, the ecological systems under protection, and the uncertainty of the effects combine to produce situations for which there are no simple answers. The solution to coexistence of the park and surrounding land depends upon creative techniques and recommendations, many still forthcoming. Ecological, sociological, legal, and economic disciplines as well as the managing agency should all contribute to these recommendations. Platforms for change include legislation, institutional policies, communication, education, management techniques, and ethics.  相似文献   

8.
ABSTRACT: Although our current (1990) knowledge of hydrologic and hydraulic processes is based on many years of study, there are river environments where these processes are complex and poorly understood. One of these environments is in mountainous areas, which cover about 25 percent of the United States. Use of conventional hydrologic and hydraulic techniques in mountain-river environments may produce erroneous results and interpretations in a wide spectrum of water-resources investigations. An ongoing U.S. Geological Survey research project is being conducted to improve the understanding of hydrologic and hydraulic processes of mountainous areas and to improve the results of subsequent hydrologic investigations. Future hydrologic and hydraulic research needs in mountainous areas are identified.  相似文献   

9.
Silicon carbide (SiC) heating elements (siliconits) are widely used at high-temperature fields. The raw materials, manufacture process and application fields of siliconits are all related to heavy energy consumption and pollutions, and bring high environmental loads. The resources consumption and pollution emissions in siliconit manufacture process were quantificationally estimated by input/output method. Difference between two traditional techniques to produce siliconits in China was also compared and analyzed. The results show that siliconit manufacture processes consume large quantities of resources because the furnace is open to environment and too much thermal-protection materials are used. For the thick-end technique is more complicated and the thick-end siliconits have a bigger size and mass, there are more resources and energy consumptions and pollution emissions for thick-end process than that for equal-diameter process. Some suggestions were introduced to improve the traditional techniques and a new process was designed. It is the most important that the open furnace should be replaced by close vacuum furnace. Sintering and siliconizing process can be combined into one high-temperature process. As results of process simplification and vacuum sintering, resources and energy consumption and wastes emission can be decreased remarkably.  相似文献   

10.
House-Peters, Lily, Bethany Pratt, and Heejun Chang, 2010. Effects of Urban Spatial Structure, Sociodemographics, and Climate on Residential Water Consumption in Hillsboro, Oregon. Journal of the American Water Resources Association (JAWRA) 46(3):461-472. DOI: 10.1111/j.1752-1688.2009.00415.x Abstract: In the Portland metropolitan area, suburban growth in cities such as Hillsboro is projected to increase as people seek affordable housing near a burgeoning metropolis. The most significant determinants for increases in water demand are population growth, climate change, and the type of urban development that occurs. This study analyzes the spatial patterns of single family residential (SFR) water consumption in Hillsboro, Oregon, at the census block scale. The following research questions are addressed: (1) What are the significant determinants of SFR water consumption in Hillsboro, Oregon? (2) Is SFR water demand sensitive to drought conditions and interannual climate variation? (3) To what magnitude do particular census blocks react to drought conditions and interannual climate variation? Using ordinary least squares multiple regression and spatial regression methods, we found that base use, representing indoor water use, is dependent on household size and that seasonal use, representing external water use is dependent on both education level and the size of the property’s outdoor space. Spatial analysis techniques determined that although the water demand of the study area as a whole is not sensitive to drought conditions, certain individual census blocks do respond with a higher magnitude of water use. The most climate-sensitive census blocks tend to contain newer and larger homes, and have higher property values and more affluent and well-educated residents.  相似文献   

11.
ABSTRACT: In order to determine design capacities for various components of municipal and rural domestic water supply systems, engineers must estimate water requirements for an entire year (water rights), for the peak season (reservoir storage), for the peak day (pump or treatment plant size), and for peak hour (pipeline sizes). Historically, per capita water use rates have varied greatly between systems, particularly in semiarid regions where outdoor demands are large. The resulting uncertainty in design capacity estimates can cause either inadequate capacities or premature investment. In order to minimize that uncertainty multiple regression and frequency analyses were made of the various water demand parameters mentioned above for 14 systems in Utah and Colorado. Specifically, demand functions are reported for average month, peak month, and peak day. Peak hour demands were also studied but are reported in a different paper. The independent variables which were significant for monthly and daily demands were price of water and an outdoor use index which includes the effect of variation in landscaped area and accounts for use of supplementary ditch or pressure irrigation systems. The demand functions were developed with data from systems varying in size from very small low density rural systems to Salt Lake City's water system. The correlation coefficients (R2) vary from 0.80 to 0.95.  相似文献   

12.
ABSTRACT: Genetic algorithms (GA) and simulated annealing (SA), two global search techniques, are coupled with MODFLOW, a commonly used groundwater flow simulation code, for optimal management of ground water resources under general conditions. The coupled simulation-optimization models allow for multiple management periods in which optimal pumping rates vary with time to reflect the changing flow conditions. The objective functions of the management models are of a very general nature, incorporating multiple cost terms such as the drilling cost, the installation cost, and the pumping cost. The models are first applied to two-dimensional maximum yield and minimum cost water supply problems with a single management period, and then to a multiple management period problem. The strengths and limitations of the GA and SA based models are evaluated by comparing the results with those obtained using linear programming, nonlinear programming, and differential dynamic programming. For the three example problems examined in this study, the GA and SA based models yield nearly identical or better solutions than the various programming methods. While SA tends to outperform GA in terms of the number of forward simulations needed, it uses more empirical control parameters which have significant impact on solution efficiency but are difficult to determine.  相似文献   

13.
Out study deals with the demand for water and alternative agricultural production and land use patterns under varying prices for both surface and ground water. We derive irrigation water demands for both the United States and regions of it. Not only is a different amount of water used at each set of water prices but also a different mix of crops, livestock, and production technology develops among the different regions. Under the highest set of prices used, more than fourteen million acres are converted into dryland farming. Total irrigated water use decreases by more than 25 million acre-feet. Irrigated crop yields are reduced and cropping patterns shift away from irrigation. Commodity shadow prices increase as much as 15 percent under high prices for both surface and ground water. A redistribution of farm income occurs between irrigated and dryland regions.  相似文献   

14.
ABSTRACT: The Chubb/Bauman (Ch/B) method for making quantitative estimates of recreation potential for rivers is based on the 1968/ 69 Leopold method for quantitative assessment of the scenic beauty of rivers. Both use classifications of environmental variables as the database. Unlike the Leopold method, the classifications used in the Ch/B method consistently reflect human preferences. The Ch/B method collects information on 67 variables, and uses a computer program to produce estimates of potential for 16 common recreation activities. This critique evaluates selected concepts and procedures of the Ch/B method partly by comparison with other available methods of recreation resource inventory. It considers the validity and utility of numerical weighting of variables, the use of numbers derived from place in a classification, and the transformation process. The quantitative techniques of the method exhibit serious flaws. Much of the data produced by the method appears to be quantitative but in fact is not, and it does not produce truly quantitative estimates of recreation potential. Classifications of generalized geographic or environmental variables are shown to have serious defects as a basis for evaluation of recreational potential.  相似文献   

15.
Understanding the impacts that influence water quality is critical to the development of best management practices at the large watershed scale. This study describes the spatiotemporal variation in surface water quality and identifies their main impact in the Haihe River basin, China. Multivariate statistical techniques are applied to analyze the similarities among the sampling sites and to identify the main pollution sources in surface water. Results show that: (1) the basin can be clustered into two regions, water quality being better in the mountainous vs. plain regions; (2) water quality improves due to implementation of a strict state policy on environmental pollution control, prodded by the hosting of the Olympic games in the cities of Beijing and Tianjin; and (3) agricultural and residential land uses as well as livestock‐breeding are the main sources affecting water quality in the mountainous regions, whereas rural waste discharge — including domestic waste sewage, human and animal feces, and solid waste — significantly influences water quality in the plain regions. The waste discharge of industrial factories may be a significant source of water pollution in the plain regions. Results indicate that the environmental management from pollution sinks and sources, long‐lasting legal framework, and adequate economic incentives should be improved to optimize the large‐scale watershed management under the background of the rapid development of countries like China.  相似文献   

16.
The analytical structure of environmental impact assessment is continually changing as the applicability of established techniques from other fields and the development of novel methods become known. This paper illustrates the applicability of using existing data bases, through a geographic information system, for theex ante evaluation of land use disruption. More specifically, the Canada Geographic Information System was employed to retrieve, to analyze, and to produce land capability statistics and land use maps for the proposed Glengowan dam and reservoir.  相似文献   

17.
ABSTRACT: The unit hydrograph is a common tool in hydraulic design. Used correctly, it allows a design engineer to estimate a runoff hydrograph from a drainage basin given a rainfall event. The typical method for estimating a unit hydrograph for a gaged watershed is by deconvolution. However, distinct storms produce different unit hydrographs for a single watershed. Consequently, a design engineer usually develops a composite, or average, unit hydrograph based on several recorded storm events. Common methods for estimating this composite unit hydrograph include curve fitting, simple aggregation, and multistorm optimization techniques. This paper introduces a new method to perform aggregation of unit hydrographs. The method is an extension to the simple averaging technique, in which prior to averaging, the individual unit hydrograph time ordinates are normalized with respect to the average time to peak. The normalization method is compared to a simple averaging technique and two multistorm aggregation techniques at six rural watersheds in Alabama. The results indicate that on average the normalization method predicts runoff nearly as accurately as the multistorm techniques, and displays improvement for 60 percent of the storms tested when compared with the simple averaging technique.  相似文献   

18.
ABSTRACT: Economic benefit functions of water resource use are estimated for all major offstream and instream uses of Colorado River water. Specific benefit estimates are developed for numerous agricultural regions, for municipal uses, and for cooling water in thermal energy generation. Economic benefits of hydropower generation are given, as are those for recreation on Colorado River reservoirs and on one free-flowing reach. Marginal and total benefit estimates for Colorado River water use are provided. The estimates presented here represent a synthesis of previous work, providing in total a comprehensive set of economic demand functions for competing uses of Colorado River water. Non-use values (e.g., benefits of preserving endangered species) are not estimated.  相似文献   

19.
ABSTRACT Operational cloud seeding projects, those designed to produce a desired change in the weather and that are nonexperimental in nature, continue to be pursued widely in the United States. A recurring question by scientists, project sponsors, and cloud seeders has been, “was the weather altered and if so, by how much?” Evaluation of such projects is now recognized as having scientific benefits, and a four-year study has addressed various techniques and statistical methods to perform evaluations and to learn more about how to modify the weather. Most such evaluations hinge on some type of space-time comparisons, but valid comparisons can be obtained only avoiding biases in the project design and operation. Through simulated changes in weather conditions, it was determined that the principal component regression techniques were used to evaluate selected rain and hail modification projects, revealing modification in certain projects and none in others. Various relevant issues have been examined such as use of other weather variables (covariates) to increase detection power, the validity of using historical data as controls for discrete operational periods, possible randomization options during cloud seeding operations, and analyses of individual rain events versus that based on monthly or seasonal units.  相似文献   

20.
Studies throughout Florida have shown smart controllers can substantially reduce irrigation under residential high‐water use conditions. However, successful promotion requires understanding the link between controller performance and the mechanisms by which they are adopted. This article compares irrigation water‐use and survey data collected from households installed with soil moisture sensor and evapotranspiration controllers. The study investigated whether the relative change in irrigation use between two years preceding and two years following installation was a reliable predictor of a homeowner's satisfaction with the device and likelihood of continuing to use it. Results indicated relative changes in irrigation use were only significantly associated with the quality of controller programming. Satisfaction with the controller was largely attributable to satisfaction with the appearance of the landscape and the perceived water‐saving effectiveness of the controller whereas the likelihood of its continued use was only significantly predicted by the level of technical knowledge regarding its functioning and whether or not challenges were experienced with it. Targeting homeowners with supplemental user‐friendly information may best support their long‐term adoption of smart controllers while providing irrigation contractors with training in implementation techniques would represent an integrated strategy for added reductions in residential outdoor water use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号