首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: A comprehensive study was conducted to implement the Storm Water Management Model (SWMM) for urban areas in Kuwait. The updated version of the model designed to run on an IBM Personal Computer and compatibles (PCSWMM3.2C) was utilized. The study revealed that urban runoff simulation in arid areas by the SWMM model is a powerful and efficient tool in designing drainage systems and as such, a viable replacement of the commonly used rational method. It was found that only the streets and paved areas that are hydraulically connected to the drainage system contribute to runoff. Fine and coarse discretization approaches were used in the study. The difference between the hydrographs simulated by the two approaches were relatively small. The performance of the existing drainage system and the accuracy of the design method used were tested using a 25-year storm. The result of the simulation revealed that the storm sewers were oversized by factors ranging from 1.2 to 3.6. The SWMM model was used to estimate the storm water runoff volume collected from all urbanized areas in Kuwait City. The annual expected harvested runoff water was found to be significant; however, the quality of runoff water needs to be assessed before a decision is made on its reuse.  相似文献   

2.
A comparative study was undertaken to evaluate peak runoff flow rates using (1) a continuous series of actual rainfall events and (2) design storms. The ILLUDAS computer model was used to simulate runoff over a catchment within the city of Montreal, Canada. A ten-year period, five-minute increment rainfall data base was used to derive peak flow frequency curves. Two types of design storms were analyzed: one derived from intensity duration frequency curves (Chicago type), the other from averaging actual rainfall patterns (Huff type). Antecedent soil moisture conditions were considered in the analyses. It was found that the probability distribution of runoff peak flow was sensitive to the choice of design storm pattern and to the antecedent soil moisture condition. A symmetrical, Chicago-type design storm with antecedent dry soil moisture produced a flow frequency curve similar to the one obtained from a series of historical rainfall events.  相似文献   

3.
ABSTRACT: A regression analysis using a generalized least squares approach on flow data from the driftless area of Wisconsin indicates that the ratio of drainage area to time-to-peak is a good predictor of flood quantiles. The estimation of time-to-peak (or some other measure of basin response time) requires direct measurement of river stage and possibly rainfall at the site of which the quantiles are to be estimated. The cost-effectiveness of such an approach must yet be determined.  相似文献   

4.
ABSTRACT: Data collected at a 79-acre urban watershed in Albuquerque, New Mexico, were used to calibrate and verify the Distributed Routing Rainfall-Runoff Model, a parametric watershed model. Standard errors of estimate for the 38 calibration storms were 33 percent and 38 percent, respectively, for volumes and peaks; and for the 46 verification storms were 29 percent and 37 percent, respectively, for volumes and peaks. Correlation coefficients for peaks were 0.8 and 0.95, respectively, for calibration and verification storms.  相似文献   

5.
ABSTRACT: A strategy for formulating and testing the Poisson partial duration extreme value model is presented. The procedure is demonstrated using recorded Streamflow series from a humid subtropical region of the southern United States. The observed data series are partitioned by climatic causes and tested for both the Poisson assumption and the validity of the exponential as marginal distributions. Several statistical tests are utilized in making these determinations. Some important aspects of the model as applied to humid climates are demonstrated. It was found that a majority of Streamflow series could be represented by the model and that significant differences do exist between the arrival structures of floods resulting from different climatic mechanisms. However, these differences generally do not exist in the distribution of the flood magnitudes. In addition, it is possible that model validity is restricted by drainage basin size.  相似文献   

6.
ABSTRACT: An environmental simulation model of the Upper St. Johns River Basin, Florida, has been developed in order to predict hydrologic responses under proposed management plans. Land use projections for each of 19 hydrologic planning units are provided by a linear programming analysis of agricultural activities. Inputs to the model include rainfall, runoff, evapotranspiration (ET), aquifer properties, topography, soil types, and vegetative patterns. A water balance is developed in the uplands based on infiltration, ET, surface runoff, and groundwater flow. Valley continuity is based on stage-volume relationship for inflows and outflows and a variable roughness coefficient dependent on vegetative patterns. Land use changes form the basis for predicting hydroperiod variation under alternative management schemes. Plans are ranked according to two criteria, deviation from a natural hydroperiod and flood or drought control provided. Results indicate that (1) a single reservoir without irrigation and (2) floodplain preservation plans are superior to (3) multiple reservoir with irrigation and (4) uncontrolled floodplain plans with regard to both criteria.  相似文献   

7.
ABSTRACT: As an alternative to the conventional single-peak design storms commonly used in hydrologic practice, a large number of Southeastern Pennsylvania storm events were selected from hourly U.S. National Oceanographic and Atmospheric Administration (NOAA) records, and their temporal distributions were analyzed. From these recorded events, design storms of a typical distribution were developed for storm durations between 6 and 18 hours. All of these generated design storms have two or more peaks. The conventional single peak as well as the “typical” multi-peak storms were then applied to a simulated watershed. It was found that the multi-peak storms consistently produced more dispersed hydrographs with lower runoff peaks than the conventional single peak storms.  相似文献   

8.
ABSTRACT: The SCS infiltration model was applied to the Ralston Creek watershed in eastern Iowa. The criteria to determine the various model parameters were revised to obtain a better agreement between the observed and computed total runoffs. A procedure to calibrate the infiltration model is presented. The infiltration model was used in conjunction with an overland flow model to develop flood hydrographs. The results indicate that SCS infiltration model adequately describe the distribution of losses.  相似文献   

9.
: This paper presents solutions to the one-dimensional, transient conservation of mass equations for the coupled biochemical oxygen demand-dissolved oxygen (BOD-DO) reactions, based on the principle of superposition, for continuously discharging plane sources. The solutions are applied within the framework of a continuous simulation model to allow the derivation of water quality frequency curves and frequency histograms of consecutive hourly dissolved oxygen violations, for any desired standard. Receiving water response is determined for waste inputs from urban wet weather, dry weather, and upstream sources. An application to Des Moines, Iowa, and Des Moines River indicated that urban storm water impacts on the stream can be masked in the cumulative frequency curve representation, but the benefits of storm water control are clearly shown in frequency histograms of the duration of consecutive stream standard violations.  相似文献   

10.
ABSTRACT: The Penn State Urban Runoff Model, developed in 1976, is described in this paper. Aside from locating infiltration and detention basin operation in an unconventional manner, the model includes a peak flow presentation table which identifies watershed subareas chiefly responsible for the occurrence of flooding conditions at certain points in the watershed. The results of a case study on an urban drainage basin in the Philadelphia area is discussed, and preferred sites for retention ponds are suggested. The simplicity of the Penn State model is pointed out and computer run costs between 10 and 20 percent of the corresponding cards for HEC-I and SWMM are cited.  相似文献   

11.
ABSTRACT: A semi-distributed deterministic model for real-time flood forecasting in large basins is proposed. Variability of rainfall and losses in space is preserved and the effective rainfall-direct runoff model segment based on the Clark procedure is incorporated. The distribution of losses in space is assumed proportional to rainfall intensity and their evolution in time is represented by the φ-index; furthermore, an initial period without production of effective rainfall is considered. The first estimation of losses and the associated forecasts of flow are performed at the time corresponding to the first rise observed in the hydrograph. Then the forecasts of flow are corrected at each subsequent time step through the updating of the φ-index. The model was tested by using rainfall-runoff events observed on two Italian basins and the predictions of flow for lead times up to six hours agree reasonably well with the observations in each event. For example, for the coefficient of persistence, which compares the model forecasts with those generated by the no-model assumption, appreciable positive values were computed. In particular, for the larger basin with an area of 4,147 km2, the mean values were 0.4, 0.4 and 0.5 for forecast lead times of two hours, four hours and six hours, respectively. Good performance of the model is also shown by a comparison of its flow predictions with those derived from a unit hydrograph based model  相似文献   

12.
ABSTRACT: A large storm in December 1990 allowed the evaluation of flood predictions from a hydrologic model (TOPMODEL) that had been previously calibrated on the West Fork of Walker Branch Watershed, a gauged 37.5 ha catchment near Oak Ridge, Tennessee. The model predicts both hydrograph dynamics and the spatial distribution of overland flow using an index based on topography. Maximum extent of overland flow during the storm was determined from patterns of leaf litter removal from valley bottoms. Both the flood hydrograph and the extent of overland flow were accurately predicted using model parameters obtained from a three-month period of normal flow conditions during 1983.  相似文献   

13.
ABSTRACT: Three urban runoff models, namely, the Road Research Laboratory Model (RRLM), the Storm Water Management Model (SWMM) and the University of Cincinnati Urban Runoff Model (UCURM), were examined by comparing the model simulated hydrographs with the hydrographs measured on several instrumented urban watersheds. This comparison was done for the hydrograph peak points as well as for the entire hydrographs using such statistical measures as the correlation coefficient, the special correlation coefficient and the integral square error. The results of the study indicated that, when applying the three selected non-calibrated models on small urban catchments, the SWM model performed marginally better than the RRL model and both these models were more accurate than the UCUR model. On larger watersheds, the comparisons between the SWM model and the other two models would be likely even more favourable for the SWM model, because it has the most advanced flow routing scheme among the studied models.  相似文献   

14.
ABSTRACT: The Snowmelt Runoff Model (SRM) is designed to compute daily stream discharge using satellite snow cover data for a basin divided into elevation zones. For the Towanda Creek basin, a Pennsylvania watershed with relatively little relief, analysis of snow cover images revealed that both elevation and land use affected snow accumulation and melt on the landscape. The distribution of slope and aspect on the watershed was also considered; however, these landscape features were not well correlated with the available snow cover data. SRM streamflow predictions for 1990, 1993 and 1994 snowmelt seasons for the Towanda Creek basin using a combination of elevation and land use zones yielded more precise streamflow estimates than the use of standard elevation zones alone. The use of multiple-parameter zones worked best in non-rain-on-snow conditions such as in 1990 and 1994 seasons where melt was primarily driven by differences in solar radiation. For seasons with major rain-on-snow events such as 1993, only modest improvements were shown since melt was dominated by rainfall energy inputs, condensation and sensible heat convection. Availability of GIS coverages containing satellite snow cover data and other landscape attributes should permit similar reformulation of multiple-parameter watershed zones and improved SRM streamflow predictions on other basins.  相似文献   

15.
A sensitivity analysis of a computer model, simulating major water and nitrogen processes of a soil-water-plant-climatic system on an annual basis, was conducted to determine how the model reacts to the variations in selected hydrologic and nitrogen parameters. Two major output variables (namely, total subsurface drain volume and cumulative nitrate loss with subsurface drain water) were selected for the sensitivity analysis. Model sensitivity analysis shows that the model is most sensitive to hydrologic parameters. The model is very sensitive to variations in the initial water content in the soil profile.  相似文献   

16.
ABSTRACT: Historically ephemeral washes in the Las Vegas Valley have become perennial streams in the urbanized area, and the primary source of these perennial flows appears to be the overirrigation of ornamental landscaping and turf. Overirrigation produces direct runoff to the washes via the streets and results in high ground water levels in some areas. Elevated ground water levels result in discharge to the washes because of changes in the natural balance of the hydrologic system and construction site and foundation dewatering. In recognition of the resource potential of these flows within the Las Vegas Valley, of the potential for dry weather flows to convey pollutants from the Valley to Lake Mead, and of the need to characterize dry weather flows under the stormwater discharge permit program, the quantity and quality of dry weather flow in Flamingo Wash was investigated during the period September 1990 through May 1993. This paper focuses on the resource potential of the flow (quantity and quality) as it relates to the interception and use of this water within the Valley. Economic and legal issues associated with the interception and use of this resource are not considered here.  相似文献   

17.
ABSTRACT: A complex watershed-scale water quality simulation model, the Hydrological Simulation Program-FORTRAN (HSPF) model, was calibrated for a 16 km2 catchment. The simulation step size was 0.33 hours with predicted and recorded hydrologic flows compared on an annual and monthly basis during a total calibration period of four years. Unguided numerical optimization when applied alone did not yield a model parameter set with acceptable predictive capability; instead, it was necessary to apply a critical process that included sensitivity analysis, numerical optimization, and testing of derived model parameter sets to evaluate their performance for periods other than those for which they were determined. Using this critical calibration process, the model was proven to have significant predictive capability. Numerical optimization is an aid for model calibration, but it must not be used blindly.  相似文献   

18.
ABSTRACT: Nine flood-estimation models used for ungauged urban watersheds in Louisiana were evaluated. Flood-quantile predictions from simple regression models calibrated by local data were found to be more reliable than those more complicated models or models with many parameters that may not be accurately estimated. Flood prediction from models developed by using regionalization techniques were found to be reasonably good. Finally, application of a model outside of its limitations or domain may lead to substantial prediction error.  相似文献   

19.
ABSTRACT: This paper examines the performance of snowmelt-runoff models in conditions approximating real-time forecast situations. These tests are one part of an intercomparison of models recently conducted by the World Meteorological Organization (WMO). Daily runoff from the Canadian snowmelt basin Illecille. waet (1155 km2, 509–3150 m a.s.l.) was forecast for 1 to 20 days ahead. The performance of models was better than in a previous WMO project, which dealt with runoff simulations from historical data, for the following reasons: (1) conditions for models were more favorable than a real-time forecast situation because measured input data and not meteorological forecast inputs were distributed to the modelers; (2) the selected test basin was relatively easy to handle and familiar from the previous WMO project; and (3) all kinds of updating were allowed so that some models even improved their accuracy towards longer forecast times. Based on this experience, a more realistic follow-up project can be imagined which would include temperature forecasts and quantitative precipitation forecasts instead of measured data.  相似文献   

20.
ABSTRACT: Proper selection of curve number values will improve the capability of the SCS-Curve Number procedure in predicting runoff. Both CREAMS and GLEAMS models use the Smith and Williams (1980) approach of converting CNII (curve number value for average antecedent moisture conditions) into CNI (curve number value for dry antecedent moisture conditions) in calculating the soil retention parameter (S). CREAMS and GLEAMS have been found to under predict runoff because of the internal conversion of CNII to CNI. This study shows modifications of the GLEAMS model using CMI without converting it to CM and it also shows the seasonal curve number approaches with and without converting CNII to CNI. Results indicate that using CNII without internal conversion to CNI provides better runoff and erosion predictions than the original version of GLEAMS and versions with seasonal curve numbers when tested with four years of field data in the Coastal Plain physiographic region of Maryland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号