首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
ABSTRACT: A ground-water-management model was developed to investigate the best management options for the containment of an oil-field-brine plume in the Equus Beds aquifer in south-central Kansas. The main purpose of the management model was to find the optimal locations and minimum rates of pumpage of a set of plume-interception wells, to successfully reverse the velocity vectors at observation wells located along the plume front, and also to satisfy freshwater demands from supply wells. The effects of the calculated minimum withdrawals from the interception wells on the migration of contaminants throughout the ground-water system were evaluated utilizing a solute-transport model. This latter analysis was carried out to ensure the containment of the plume. Whereas application of the management model to the study area achieves the management objectives, the implementation of the results is believed to be impractical and expensive. This is because a considerable amount of water must be pumped out to reverse the velocity vectors in the vicinity of the plume. In general, the proposed technique of pollutant containment may be effective when applied to aquifers having low hydraulic gradients and/or to aquifers with hazardous plumes whose containment is not subject to economic constraints.  相似文献   

2.
A groundwater hydraulic management model is used to identify the optimal strategy for allocating limited fresh-water supplies and containing wastes in a hypothetical aquifer affected by brine contamination from surface disposal ponds. The present cost of pumping from a network of potential supply and interception wells is minimized over a five-year planning period, subject to a set of hydraulic, institutional, and legal constraints. Hydraulic constraints are formulated using linear systems theory to describe drawdown and velocity variables as linear functions of supply and interception well discharge decision variables. Successful validation of the optimal management strategy suggests that the model formulation can feasibly be applied to define management options for locally contaminated aquifer systems which are used to fulfill fresh-water demands.  相似文献   

3.
ABSTRACT: This study considers the design and analysis of nonpumped well systems to provide pressure relief in the Cochrane aquifer, which is hydraulically connected to the Waterton Reservoir, Analyses of the relief well management problem are performed with a management model formulated by the combined simulation-optimization approach. The model determines active relief well sites and their optimal discharge schedules. The existing relief wells are inadequate to provide the desirable pressure relief. The locations and design capacities of two new relief well systems are determined by the management model. The relationships between reservoir level and well discharge are estimated for these two well systems.  相似文献   

4.
ABSTRACT; This paper presents a numerical model for the prediction of optimal ground water withdrawal from a two-aquifer system by observing a set of constraints determined by the ecological conditions of the ground water basin. The aquifer system consists of an upper unconfined and a lower confined aquifer with a leaky stratum between them. It is assumed that water is withdrawn from the confined aquifer only, but the unconfined aquifer will also be affected due to the leakiness of the layer separating the upper and lower aquifers. Simulation and linear programming are employed for developing a computer model for the optimal management of such systems, with the objectives of determining withdrawal rates for predetermined ground water levels.  相似文献   

5.
ABSTRACT: The deep aquifers of the Portland Basin are used as a regional water supply by at least six municipalities in Oregon and Washington. Maximum continuous use of the aquifers in 1998 was 13 mgd and peak emergency use was 55 mgd. Continuous use of the deep aquifers at a rate of 55 mgd has been proposed and inchoate water rights have been reserved for expansion of pumping to 121 mgd. A study was completed, using a calibrated ground water flow model, to evaluate the role of induced recharge from the Columbia River in mitigating aquifer drawdown from continuous‐use and expanded pumping scenarios in the center and eastern areas of the basin. The absolute average residual was less than 3.6 feet for steady‐state model calibrations, and less than 8.0 feet for transient calibration to a 42 mgd pumping event in 1987 with 170 feet of drawdown. Continuous use of the aquifers at a rate of 55 mgd is predicted to increase drawdown to 210 feet. Expansion of pumping to 121 mgd in the center basin is predicted to cause 400 feet of drawdown. However, expansion of pumping in the east basin is predicted to result in only 220 feet of drawdown because of induced recharge from the Columbia River.  相似文献   

6.
Groundwater use is likely to be inefficient in the absence of regulation and hence there is substantial interest in optimal groundwater withdrawals over time. Under an optimal regime withdrawals, pumping lifts, and profits converge to steady-state levels. In this paper we show that optimal steady-state lifts, withdrawals, and marginal user costs can be readily calculated for multi-cell models of confined aquifers. Applications to the design of economically efficient groundwater management policies are discussed, comparisons to previous work and to the safe yield concept are made, and an illustrative example is given.  相似文献   

7.
ABSTRACT The literature on decision models in economics of regional water quality management is reviewed and classified.  相似文献   

8.
ABSTRACT: Irrigation development of the dolomite aquifer in eastera Kankakee and northern Iroquois Counties, Illinois, is extensive and increasing. Interruptions of domestic supplies have been reported with increasing frequency during the 1980's. To address this issue, a regional assessment of the ground-water resources of the region was conducted in 1987 and 1988. Options for managing the dolomite aquifer were also investigated. Hydrogeology of the dolomite aquifer was determined using five aquifer tests. Tranamissivity values of the dolomite aquifer ranged from 14,000 to 50,000 gpd/ft (168 to 600 m3/m/day). Storage coefficients were between 0.0001 and 0.0002, within the range of a confined (artesian) aquifer. Based on flow-net analyses, recharge of the dolomite aquifer ranged from 85,000 to 285,000 gpd/mi2 (124.4 to 417.0 m3/day/km2). Water levels of the dolomite aquifer were mapped during five periods in 1987 and 1988 by measuring up to 226 wells completed in the dolomite aquifer. Maximum regional water-level declines because of irrigation pumpage were 44 feet (13.4 m) in 1987 and 72 feet (21.9 m) during the drought of 1988. Based on ground-water use data, precipitation records, and hydrogeologic information, the magnitude of water-level declines can be attributed more to differing hydrogeologic conditions than to pumpage or climatic changes. Existing ground-water management methods for resolving conflicts over the ground-water resources of the study area are reviewed and alternative management options explored.  相似文献   

9.
ABSTRACT: The equations of transient and steady-state flow in two-dimensional artesian aquifers are approximated using finite differences. The resulting linear difference equations, combined with other linear physical and management constraints and a linear objective function, comprise a linear programming (LP) formulation. Solutions of such LP models are used to determine optimal well distributions and pumping rates to meet given management objectives for a hypothetical transient problem and for a steady-state field problem.  相似文献   

10.
ABSTRACT: Most of California's precipitation falls at the wrong place in the wrong season in relation to the water needs. Redistribution and regulation are essential. Aquifer systems – groundwater basins – can provide a share of the future cyclic storage regulation. There are some differences in management concepts in using a full basin in comparison with a partially dewatered basin. Legal, water quality, and physical impacts on aquifer systems, including subsidence, are concerns. Storage may be for the benefit of overlying water users or for distant areas. Extraction during dry periods or recharge methods will require careful planning. Existing rights and uses and equitable treatment of all parties must be assured. Financial compensation may be involved. Changes in methods of operation or degree of self-determination by affected water agencies will require committed watermanship to resolve. Legislation or amendments to organic acts may be needed but much can be accomplished within existing statutes. Environmental impacts which can be avoided by not using large surface storage sites are important. Energy for pumping will be a key consideration. About 40 percent of California is underlain by aquifer systems. This resource offers major potential in overcoming the maldistribution of natural water resources.  相似文献   

11.
ABSTRACT: Aquifers with pressure head seriously reduced by overdrafting are referred to as depleted. In coastal areas they may be invaded by saltwater. An obvious remedy is to reduce the rate of withdrawal to the permanently available dependable yield. This is being done now in two areas for New Jersey, under the authority of the State's Water Supply Management Act; but it has not previously been accomplished on a regional scale. The dependable yield was estimated by means of detailed hydrogeological modeling. “Water Supply Critical Areas” were delimited on the basis of piezometric pressure, drawn down 30 feet below sea level. Within the depleted area, water withdrawals must be reduced by a fixed ratio (35 to 50 percent) below the amount withdrawn during 1983. This reduction is effective as soon as al alternative source of water can be made available, usually from a surface source. Special arrangements are made whereby ground water users unconnected to the alternative source of supply can pay to withdrawn their full needs from the depleted aquifers, the money being used to purchase additional water from the new surface water source, in return for which some other user will reduce his ground water withdrawal below his reduced allocation.  相似文献   

12.
ABSTRACT: Forest land managers are concerned about the effects of logging on soil erosion, streamflow, and water quality and are promoting the use of Best Management Practices (BMPs) to control impacts. To compare the effects of BMP implementation on streamwater quality, two of three small watersheds in Kentucky were harvested in 1983 and 1984, one with BMPs, the other without BMPs. There was no effect of clearcutting on stream temperatures. Streamflow increased by 17.8 cm (123 percent) on the BMP watershed during the first 17 months after cutting and by 20.6 cm (138 percent) on the Non-BMP watershed. Water yields remained significantly elevated compared to the uncut watershed 8 years after harvesting. Suspended sediment flux was 14 and 30 times higher on the BMP and Non-BMP Watersheds, respectively, than on the uncut watershed during treatment, and 4 and 6.5 times higher in the 17 months after treatment was complete. Clearcutting resulted in increased concentrations of nitrate, and other nutrients compared to the uncut watershed, and concentrations were highest on the non-BMP watershed. Recovery of biotic control over nutrient losses occurred within three years of clearcutting. The streamside buffer strip was effective in reducing the impact of clearcutting on water yield and sediment flux.  相似文献   

13.
ABSTRACT: Changes in irrigation and land use may impact discharge of the Snake River Plain aquifer, which is a major contributor to flow of the Snake River in southern Idaho. The Snake River Basin planning and management model (SRBM) has been expanded to include the spatial distribution and temporal attenuation that occurs as aquifer stresses propagate through the aquifer to the river. The SRBM is a network flow model in which aquifer characteristics have been introduced through a matrix of response functions. The response functions were determined by independently simulating the effect of a unit stress in each cell of a finite difference groundwater flow model on six reaches of the Snake River. Cells were aggregated into 20 aquifer zones and average response functions for each river reach were included in the SRBM. This approach links many of the capabilities of surface and ground water flow models. Evaluation of an artificial recharge scenario approximately reproduced estimates made by direct simulation in a ground water flow model. The example demonstrated that the method can produce reasonable results but interpretation of the results can be biased if the simulation period is not of adequate duration.  相似文献   

14.
ABSTRACT: A possible methodology is developed to deal with the problem of designing complex pipeline systems, when they are subject to different rates of demand, and when a hypothesis of the flow distribution in different branches is not allowed. The mathematical algorithm used in linear programming. The problem, which is not linear, is dealt with by means of an iterative method; that is, by starting with a possible solution and inserting at each iteration the solution found in the preceding iteration. By taking as variables of the problem the piezometric heads of the ends for each branch of the network, the piezometric gradients and flows, and by thus considering the diameter as a derived variable, it is possible to isolate the nonlinearity in the cost function of the network. The latter is linearized each time close to the solution found in the preceding iteration.  相似文献   

15.
ABSTRACT: Volusia County, in east central Florida, comprises approximately 1,200 square miles situated between the St. Johns River and the Atlantic Ocean. Most of the County is underlain by a three-aquifer system. Population centers in Volusia County, which create a large water demand, are located near the coast. Saltwater intrusion into the ground water near these population centers has led to relocation of public water supply wells further inland. Regional management of the county's water resources commissioned construction of a three-dimensional computer model of the county. Predevelopment simulation results were used as initial conditions for the development simulations, which included well discharge data. The predevelopment model calibration consisted of reproducing field-determined potentiometric surfaces. As part of the calibration process, sensitivity analyses were performed on boundary conditions, recharge rates, permeability, and leakage properties. Results of the model study indicate the utility of computer models as a management tool for the complex ground-water system in Volusia County.  相似文献   

16.
ABSTRACT: An optimal control methodology and computational model are developed to evaluate multi‐reservoir release schedules that minimize sediment scour and deposition in rivers and reservoirs. The sedimentation problem is formulated within a discrete‐time optimal control framework in which reservoir releases represent control variables and reservoir bed elevations, storage levels, and river bed elevations represent state variables. Constraints imposed on reservoir storage levels and releases are accommodated using a penalty function method. The optimal control model consists of two interfaced components: a one‐dimensional finite‐difference simulation module used to evaluate flow hydraulics and sediment transport dynamics, and a successive approximation linear quadratic regulator (SALQR) optimization algorithm used to update reservoir release policies and solve the augmented control problem. Hypothetical two‐reservoir and five‐reservoir networks are used to demonstrate the methodology and its capabilities, which is a vital phase towards the development of a more robust optimal control model and application to an existing multiple‐reservoir river network.  相似文献   

17.
ABSTRACT: A decision support tool is developed for the management of water resources, focusing on multipurpose reservoir systems. This software tool has been designed in such a way that it can be suitable to hydrosystems with multiple water uses and operating goals, calculating complex multi‐reservoir systems as a whole. The mathematical framework is based on the parameterization‐simulation‐optimization scheme. The main idea consists of a parametric formulation of the operating rules for reservoirs and other projects (i.e., hydropower plants). This methodology enables the radical decrease of the number of decision variables, making feasible the location of the optimal management policy, which maximizes the system yield and the overall operational benefit and minimizes the risk for the management decisions. The program was developed using advanced software engineering techniques. It is adaptable in a wide range of water resources systems, and its purpose is to support water and power supply companies and related authorities. It already has been applied to two of the most complicated hydrosystems of Greece, the first time as a planning tool and the second time as a management tool.  相似文献   

18.
ABSTRACT: By extending the concept of response matrix to consider “active” and “passive” effects, an efficient response matrix method is developed for coupling a groundwater simulator and a regional agricultural management model The method eliminates the need to store all of the recovery information from preceding time periods. Active effects are those which occur during the actual application of a pumping or recharge stress while passive effects represent the recovery of water levels from an initial departure from steady-state conditions at the beginning of a time step. Derivation of the required matrices and a numerical example are presented for the Salinas Valley groundwater basin in California.  相似文献   

19.
ABSTRACT: Ground-water level decline patterns in parts of Nebraska conform to the circular island concept of Bredehoeft et al. (1982), which indicates how water is derived by wells developed in a circular island. If elongated, the center of the island corresponds to a regional ground-water divide while the shoreline corresponds to a regional river. In both versions, ground-water table elevation is a function of recharge and transmissivity. A dynamic equilibrium exists such that the gradient of the water table will convey all recharge to discharge areas. Withdrawals of ground water result initially in mining, with a new equilibrium attained when pumping equals capture. During early development, capture is an important source of water in discharge areas, while mining is more significant in recharge areas. The pattern observed in many areas shows the greatest ground-water level decline in the vicinity of ground-water divides and the steepest gradient near regional rivers. A similar pattern has been observed adjacent to the Arkansas River in south-central Kansas. Similar decline patterns can be modeled for a hypothetical ground-water basin. This is of major importance to water-resource managers because it dictates that management programs be applied to the entire hydrologic system.  相似文献   

20.
ABSTRACT: Linear programming is the simplest of all the optimization techniques used in regional water quality management studies; but the technique can optimize only one goal. When there are multiple goals with the same or different priorities, goal programming is a useful decisionmaking tool. This paper illustrates the application of goal programming to a regional water quality management problem where the following two goals are considered: (1) minimize the total cost of waste treatment, and (2) maintain the water quality goals (dissolved oxygen) close to the minimum level stated in the stream standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号