首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Utilizing predictions of pollutant movement generated by the CREAMS model, the economics of reducing field losses of sediment and nitrate percolation were compared between two soil types on each of two slopes common to the Upper Eastern Shore of Maryland. The soils considered were Matapeake silt loam and Sassafras sandy loam textures on field slopes of 3.5 percent and 7.5 percent. A representative cash grain farm was used as a basis of comparison. Under assumptions of profit maximization, economic optimal cropping systems varied by slope. Results further indicated that relative cost-effectiveness of sediment or nitrate percolation control varied by soil type for both slopes considered. Unit costs of sediment control were less on silt loam soils, while unit costs of nitrate percolation control were less on sandy loam soils.  相似文献   

2.
Infiltration models are based on physical characteristics of the soil and initial soil moisture. For a given soil it is based on the initial soil moisture distribution. A computer simulation model for flood runoff systems (FH-Model) was used to analyze 39 sets of rainfall-runoff data on four small watersheds ranging in size from 17 to 342 square kilometers located in the Yamaska River basin in Quebec. From these analyses, parameters and coefficients have been determined for a water loss (infiltration) equation. A method for determining the loss parameters, using a nonlinear least square curve fitting technique, is presented. Expressions were made to relate the loss parameters to antecedent precipitation. The equations were tested on 11 storm rainfall and runoff events on a watershed located in the same region and close agreements were found.  相似文献   

3.
ABSTRACT: Mathematical models have been widely used in business to minimize cost and maximize profit. In this paper such models are used to help determine the optimum strategy for a beach renourishment project including the initial and subsequent fill quantities and the length of a complete renourishment cycle. The importance of considering economic factors is emphasized, and the sensitivity of the optimal values to changes in the basic parameters of the models are discussed. The possible extensions and limitations of the models are considered.  相似文献   

4.
ABSTRACT: Indigenous bacterial populations from a fresh water reservoir were treated by adding five mg/1 Sevin or Malathion to the water at 23, 28, and 33 C. The degradation of Sevin was evidenced by the increased uptake of O2 as measured by Warburg manometry. The principal degradation product of Sevin, 1-naphthol, appeared to stimulate metabolic activity of these populations to the same extent as the parent compound. The addition of Malathion to this system appeared, on the other hand, to suppress metabolic activity to some degree. Warburg manometry was shown to be a useful, rapid method for detecting effects of insecticides on aquatic microbial populations.  相似文献   

5.
Water pollution through loss of topsoil from farmland continues to be a major problem, despite nearly 50 years of providing farmers technical and financial assistance for soil and water conservation. The technology for controlling erosion and water pollution is available, but farmers have been slow in implementing control practices. Past research has shown that farmers tend to be unaware of the seriousness of the erosion problem on their own operations. Using a random sample of farmers from central Iowa, the relationship is examined between awareness of a soil erosion problem and the use of conservation tillage. Results indicate that awareness of a soil erosion problem effects the use of conservation tillage, and that awareness can be enhanced by experiential educational strategies such as the development and implementation of a soil and water conservation plan.  相似文献   

6.
ABSTRACT: The geographical distribution of well water specific electrical conductivity and nitrate levels in a 932 km2 ground water quality study area in the Fresno-Clovis, California, indicated that frequently areas of lower ground water salinity were also areas of relatively greater soil and aquifer permeability. From these observations and certain assumptions we hypothesized that the quality of the well water should be better in areas with permeable soils and geological formations. Correlation and multiple linear regression analysis supported this hypothesis for well water salinity. However, well water nitrate levels were significantly negatively correlated with only the estimated equivalent specific yield of the aquifer system. The multiple R2 values of the most significant multiple linear regression models showed that only a fourth to a third of the variability in well water specific electric conductivity and nitrate levels could be ascribed to the effects of the hydrogeological parameters considered with more than 90 percent confidence. This indicates that three-fourths to two-thirds of the variability in ground water salinity and nitrate levels may be related to land use. Thus, there is considerable room for land use management techniques to improve ground water quality and reduce its variability.  相似文献   

7.
: A methodology for determining an optimal irrigation policy to obtain maximum economic yield of crops is presented. The method is based on an empirical response function, relating crop yield to soil moisture stress in different stages of plant growth. The function was developed from data obtained in field experiments on several crops and may be useful in determining when and how much to irrigate. Additionally, a mathematical expression is derived from that function which estimates the economic loss if irrigation is not applied in the opportune moment.  相似文献   

8.
ABSTRACT: Along a drainage network, there is a systematic variation of average flow parameters (width, depth, and velocity) at flows having the same flow duration. Hydraulic geometry equations mathematically express this interdependent relationship of stream-flow characteristics for a basin for annual flow durations varying from 10 to 90 percent. However, the equations proposed so far have had rather poor predictive performance for low flows. An independent investigation of the variation of discharge with drainage area and annual flow duration demonstrates a consistent relationship between these parameters. The relationship for the high to median-flow range differs, however, from that for the median— to low-flow range. The proposed equations provide a better predictive performance for low flows than previous formulations and a versatile means of estimating flow parameters for streams throughout a basin. The improved basin hydraulic geometry equations have a wide range of applications in areas such as stream habitat assessment, water quality modeling, channel design, and stream restoration projects.  相似文献   

9.
ABSTRACT: A convenient method for the statistical analysis of hydrologic extremes is to use probability papers to fit selected theoretical distributions to extremal observations. Three commonly accepted statistical distributions of extreme hydrologic events are: the double exponential distribution, the bounded exponential distribution, and the Log Pearson Type III distribution. In most cases, probability papers are distribution specific. But, for the Log Pearson Type III distribution, the probability paper is characterized by a population-specific parameter, namely, the coefficient of skewness. It is not practicable to procure probability papers for all possible values of this parameter. Therefore, a computer program is developed to generate population-specific probability papers and to perform statistical analysis of the data using computer graphics. Probability papers covering return periods up to 1000 years or more are generated for the three distributions mentioned above. Using a plot routine, available extremal observations are plotted on selected probability papers and a linear regression analysis is used to fit a straight line to the data. Predictions of hydrologic extremes for higher recurrence intervals can be made by extrapolating the fitted straight lines.  相似文献   

10.
ABSTRACT: Alternate solutions to a contemporary water resource management problem are developed: 53 municipalities in Wisconsin's Lake Michigan watershed must reduce their phosphorus input to the lake by 85 percent of their influent load. Different definitions of fairness, based on legal and philosophical principles, form the foundation for 18 distinct policy options. The definitions of fairness include: (1) contractual agreement; (2) precedent; (3) the market system; (4) egalitarianism; and (5) equal treatment of equals and differential treatment of unequals, with equals defined in terms of need, worth, ability to pay, who receives the benefits, and the dictates of existing technology. Two alternatives are seen to dominate: (A) municipalities could form contractual relationships to meet the removal requirement as groups, and enjoy least cost operating schedules that save money for members of each group; and (B) whereas 20 of the municipalities collect 91 percent of all phosphorus collected in the watershed, a removal of 90 percent of their influent phosphorus alone ensures that the watershed meets the standard. Under this option, the other 33 municipalities are not required to remove phosphorus. Reasons for the dominance of the two policies are discussed in detail.  相似文献   

11.
The storage function model is a nonlinear rainfall-runoff model that has been developed for and applied to flood runoff analysis in Japan. This paper extends the model applicability by developing practical equations for estimating model parameters which are appropriate on a regional basis, i.e., so-called regional equations. Previously, the parameters were computed from historical data for a specific basin or from relationships that do not account for land use and topography. To develop the regionalized equations, model parameters were identified for 91 flood events from 22 watersheds in Japan by applying a mathematical optimization technique. Results from 39 of these events were statistically compared and regional relationships were determined as a function of land use, basin area and rainfall intensity. The utility of the estimated equations were tested by computing runoff hydrographs for lumped basins. The estimated parameters were also applied in a distributed watershed model formulation. Both applications showed acceptable results that validate the use of the regionalized relationships.  相似文献   

12.
ABSTRACT Results of a field survey designed to assess the extent of crop production losses due to inadequate drainage in a large watershed of Iowa is presented. Information on the current status of drainage of the watershed, located in the Des Moines River basin, was collected through personal interviews with 256 farmers from 60 legal drainage districts. The results of the survey indicate that 95 percent of the area in upper Des Moines River basin has inadequate district mains or main outlet drains currently having a design capacity of ≤ 0.64 cm/day drainage coefficient. Outlet capacity of 1.27 cm/day d.c. would be required for full production. Inadequate drainage in the watershed is currently responsible for crop yield reduction equal to about one-third of the maximum yield potential for average weather conditions.  相似文献   

13.
ABSTRACT: Runoff Routing model (RORB) is a general model applicable to both rural and urban catchments. The performance of the model is illustrated through its simulation of flood runoff hydrographs in an urban catchment in Singapore. The essential feature of the model is the routing of rainfall excesses on subareas through some arrangement of concentrated storage elements, which represent the distribution of temporary storage of flood runoff on the watershed. This nonlinear routing procedure of the storage elements has two common parameters, kc and m. With the limited data available, these two parameter values were determined through calibration runs. The same set of values of kc and m were then used in the model to determine the runoff hydrographs of five other storms selected from the rainfall events between 1979 and 1981. It was found that the simulated runoff hydrographs matched reasonably well with the recorded hydrographs.  相似文献   

14.
ABSTRACT. The task of resource management, in this case water resources, is rapidly becoming more complex, particularly because decision making is often contingent upon various prior activities and sets of data. Comprehensive planning is required in order to prevent misallocation of resources or mismanagement in resource development. Such planning involves five general phases which are applicable to any problem faced by society: (1) problem identification; (2) formulation of alternatives; (3) evaluation of alternatives; (4) implementation; (5) review. There have been many attempts to simplify the planning process and effectively carry out these five phases. The experience of the Alberta Water Resources Division has been that the Critical Path Method is one of the most useful tools available today for planning. It involves two basic steps: (1) preparation of a network diagram which (a) identifies all the activities necessary for the completion of a project, (b) correctly sequences these activities, (c) allocates resources; and (2) mathematical computations for scheduling the activities. In other words, this approach breaks a task down into smaller units or activities for easier organization, scheduling, and performance for eventual completion of the project. This paper will illustrate the effectiveness of the Critical Path Method by discussing its application to actual water resources projects.  相似文献   

15.
ABSTRACT: The hydrologic responses from an agricultural watershed in southeast Nebraska were investigated under an array of physiographic, hydrologic, meteorologic, and management conditions. For analytical purposes, the hydrologic responses were narrowed to include only runoff and sediment yield. The study was performed by utilizing the ANSWERS (Areal Nonpoint Source Watershed Environment Response Simulation) hydrologic-simulation model. Results of this study indicate that, generally, nonstructural (agronomic) Best Management Practices (BMPs) have a more significant impact in controlling erosion and nonpoint-source pollution than structurally oriented BMPs. The percentage of reduction in average soil loss as a result of changing tilage systems from conventional to chisel plow was in the mid-40s. The corresponding percentages of reduction in sediment yield from the watershed under minimum tillage and no-till systems were in the mid-60s and mid-80s, respectively. The impact of these management strategies on runoff varied considerably. That is primarily based on the watershed's antecedent soil moisture condition, land use, and the growth stage of crops. Generally, an intense, short, thunderstorm type of rainfall event had more relative impact on runoff, and therefore sediment yield than a long, gentle, and steady event.  相似文献   

16.
Changes in groundwater levels due to a well discharging at a constant rate are used with various formulas to determine hydraulic properties of aquifers and their confining bed and to detect the presence of aquifer boundaries. These formulas are generally solved by graphical methods.  相似文献   

17.
ABSTRACT: Spatial distribution of soil and water properties and the correlations between them and crop yield were determined for a natural rainfall environment. Hydraulic conductivity, soil texture, water retention, and soil-water flux were variables used to investigate their relationship to crop yield using multiple regression techniques. Variations in crop yields on a watershed with a 3 to 4 percent slope and moderately erosive soils were related to soil-water characteristics and soil properties along slope and with depth. Climatic conditions to sustain crop growth and yield ranged from inadequate soil water in 1983 to adequate soil water in 1984. Crop yield was predicted with models using both available and measured soil-water content. Available water content provided a better model for the prediction of water yield and does not require field measurements of actual soil-water content. Soil water holding capacity was more significant for predicting crop yield in soils with moderate to high silt content than infiltrability of water into the soil.  相似文献   

18.
ABSTRACT: A critical examination of the techniques used to assess and specify environmental instream flow requirements is provided. The strengths and weaknesses of individual techniques are evaluated on both an absolute and a comparative basis. Particular attention is given to the problem of specifying environmental flow requirements in Australia where the hydrology has distinctly different characteristics to those in countries where most of the models for prediction of instream flow requirements were developed. Broad recommendations as to the suitability and use of the different techniques for different conditions are provided.  相似文献   

19.
ABSTRACT: A modified version of the U.S. Environmental Protection Agency's QUAL-II water quality simulation model is calibrated and applied to the Lower Winooski River, Vermont. The river flows through the metropolitan Burlington area and is impacted by several industrial and municipal point sources and by operation of hydropower facilities. Several structural modifications are made in the model to improve water quality simulations in rivers impacted by algal growth; these include the addition of organic nitrogen and organic phosphorus compartments and provision for algal uptake of ammonia and/or nitrate nitrogen. The model is interfaced with statistical programs which facilitate tabulation, display, and analysis of observed and predicted concentrations. The model is calibrated and tested against data from two intensive water quality surveys. Applications demonstrate the factors controlling water quality and sensitivities to point source waste management strategies and flow, as influenced by hydropower operations.  相似文献   

20.
The project was designed to demonstrate the potential benefits of utilizing sewage sludge as a soil conditioner and fertilizer on Sassafras sandy loam soil. Aerobically digested, liquid sewage sludge was applied to the soil at rates of 0, 22.4, and 44.8 Mg of dry solids/ha for three consecutive years between 1978 and 1981. Groundwater, soil, and crop contamination levels were monitored to establish the maximum sewage solids loading rate that could be applied without causing environmental deterioration. The results indicate that application of 22.4 Mg of dry solids/ha of sludge is the upper limit to ensure protection of the groundwater quality on the site studied. Application rates at or slightly below 22.4 Mg of dry solids/ha are sufficient for providing plant nutrients for the dent corn and rye cropping system utilized in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号