首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ABSTRACT The efficiency of an inverted internal hydraulic jump as a mixing and dispersion mechanism in an aquatic environment was examined. The flow considered was a two-dimensional buoyant flow from a shallow channel over a sloping bottom into a deep reservoir. It could be seen that a rapidly varied flow associated with violent turbulent mixing occurred near the point of discharge if specific discharge conditions and downstream controls were met. Downstream from the mixing zone the flow was stably stratified. The main object of the study was to find the conditions under which a turbulent mixing zone occurred and the rate of turbulent entrainment. Energy loss and length of the mixing zone were also investigated. The independent variables were the outlet densimetric Froude number, the density differential between outfall water and receiving water, the relative depths of the upper and lower layers in the stratified flow portion, the total depth, and the slope of the transition. Theoretical calculations had to be confined to a step increase in depth, but experiments in a laboratory flume showed that results obtained with slopes of 23° and 90° were quite similar. Both theory and experiments showed, for example, that dilution (entrainment rates) up to 2:1 (2 parts heated water to one part cold water) can be achieved at very little energy expense and with downstream depths approximately 8 times the outlet depth. Theoretically, any amount of dilution can be obtained, but large depths may be required. Experimental results also indicate that the length of the mixing zone was frequently ten times the value of the outlet densimetric Froude number.  相似文献   

2.
ABSTRACT: The effects of variable discharges during the summer on the dissolved oxygen (DO) content and water temperature upstream and downstream of the Conowingo Hydroelectric Power Station were investigated. The DO dynamics are controlled primarily by meteorological factors that are independent of the mode of hydrostation operation. DO stratification occurred during the summer in Conowingo Pond, but thermal stratification was not observed. The magnitude and duration of off-peak discharges including a run-of-the-river operation did not affect DO stratification in Conowingo Pond; little vertical mixing occurred. However, strong winds and/or high river flows temporarily destroyed DO stratification. The run-of-the-river operation or off-peak continuous discharge schemes did not provide better DO conditions downstream of the hydrostation than the peaking operation with intermittent off-peak releases. A statistical model predicted that a DO of 5 ppm occurs 0.6 miles downstream of the powerhouse when the natural river flow is consistently greater than 15,000 cfs and water temperature is less than 80°F. A mean daily DO of at least 4 ppm was predicted to occur over 80 percent of the time during the 92-day summer period. Farther downstream (1.3 miles from the powerhouse) a mean daily DO of at least 4 ppm was predicted to occur 90 percent of the time in summer.  相似文献   

3.
The study was prepared in 1966 for the Bureau of Sport Fisheries and Wildlife, Department of the Interior, for presentation to the United States Army Corps of Engineers which had under study several routes for rediversion of the discharge from the Santee-Cooper Hydro Electric Plant, Steam Plant and Lock. Each rediversion was designed to by-pass the Charleston Harbor and this study and report was concerned with one of those routes–Rediversion Route “B.” The channel was to be designed for a maximum fresh-water flow of 27,500 cfs and a mean flow of 15,500 cfs. The objectives of the study and report were to make an estimate of: (1) the geographical extent of salt marsh waters of which the salinity will be measurably reduced, and (2) the probable accumulation of fresh-water borne sediments in those same waters. Special consultants were Dr. F. H. Kellogg, Memphis State University, and Mr. K. L. Drennan, Gulf Coast Research Laboratory, Mississippi.  相似文献   

4.
Procedures have been developed (a) to inject a tracer at a constant rate below the water surface at selected points across a stream and (b) to deal with suspended sediment. Mixing remained far from complete in relatively long channels, owing to channel and flow divergence with uncertainty where to sample downstream and which marginal sample values to include for flow calculation. These problems are encountered when mixing is largely dependent on transverse diffusion. Accurate and replicable results were obtained where dye was injected upstream and detected downstream from riffles that induced thorough turbulent mixing. Dye gaging should be practical in gorges or wherever flow is turbulent across the whole width of a channel.  相似文献   

5.
ABSTRACT: A distributed watershed model combining kinematic wave routing, 1‐D dynamic channel‐flow routing, and 2‐D diffusive overland‐flow routing has been developed to simulate flooding and inundation levels of large watersheds. The study watershed was linked to a GIS database and was divided into an upstream mountainous area and a downstream alluvial plain. A kinematic wave routing was adopted at the mountainous area to compute the discharge flowing into the alluvial plain. A 1‐D dynamic channel routing solving the St. Venant equations by the Preissmann method was performed for the main channel of the alluvial plain, whereas a 2‐D overland‐flow routing solving the diffusion wave equation with the Alternating Direction Explicit scheme was used for floodplains. The above two routings were connected by weir‐link discharge formula. The parameters in the model were calibrated and independently verified by single‐event storms. An example application of flooding/inundation analysis was conducted for the Taichung station and the Woozi depot (Taiwan High Speed Rail). Suggested inundation‐proofing measures ‐ including raising ground surface elevation of the station and depot and building a waterproofing exterior wall and their combination ‐ were investigated. It was concluded that building the waterproofing exterior wall had a strong tendency to decrease peak inundation depth.  相似文献   

6.
ABSTRACT: Along a drainage network, there is a systematic variation of average flow parameters (width, depth, and velocity) at flows having the same flow duration. Hydraulic geometry equations mathematically express this interdependent relationship of stream-flow characteristics for a basin for annual flow durations varying from 10 to 90 percent. However, the equations proposed so far have had rather poor predictive performance for low flows. An independent investigation of the variation of discharge with drainage area and annual flow duration demonstrates a consistent relationship between these parameters. The relationship for the high to median-flow range differs, however, from that for the median— to low-flow range. The proposed equations provide a better predictive performance for low flows than previous formulations and a versatile means of estimating flow parameters for streams throughout a basin. The improved basin hydraulic geometry equations have a wide range of applications in areas such as stream habitat assessment, water quality modeling, channel design, and stream restoration projects.  相似文献   

7.
Conservative solute tracer experiments were conducted in Indian Creek, a small urban stream located in Philadelphia, Pennsylvania, USA. Estimated flow rates were between 46 Ls(-1) and 81 Ls(-1), average stream width was 5.5m and average stream depth was 0.2m. Given these dimensions, most researchers would think it reasonable to assume that the stream is completely mixed vertically and horizontally. However, we found that the stream was not vertically completely mixed in a 1.0m deep, 30 m long pool. The limited mixing was demonstrated by the vertical stratification of a tracer cloud which was completely mixed both laterally and vertically across the stream prior to entering the pool. We suggest that the cause of limited mixing is due to a balance between groundwater inflow and transverse dispersion at the cross-section. We show that the unsupported assumption of complete mixing may result in a wide range, and thus increased uncertainty, of the values of stream flow and longitudinal dispersion coefficient estimated from these data. We conclude that the assumption of complete mixing and one-dimensional modeling must be checked against actual field conditions, even in small streams.  相似文献   

8.
ABSTRACT: An accounting procedure is developed which determines a flow regime that is capable of transporting an amount of bedload sediment necessary to ensure channel stability downstream. The method allows for sediment buildup in the channel within geomorphic threshold limits during low flow periods. During periods of high runoff, enough water is bypassed to transport the stored sediment. The procedure utilizes only those flows of sufficient magnitude to maintain channel stability over the long run (25–50+ years). An example is presented which determines the volume of water and frequency of release for channel maintenance purposes downstream from a hypothetical water diversion project. Of some 1,200,000 acre feet generated during a 59-year period, 86,500 acre feet was required for channel maintenance flows. Bypass flows were not required each year, but only during those years when average daily flow reached bankfull or greater. Such releases were made on 202 of the 411 days when average flows either equalled or exceeded bankfull discharge.  相似文献   

9.
ABSTRACT: Tabletop water quality modeling still plays an important role in the water pollution control activities of the Georgia Environmental Protection Division. Tabletop models are those developed with out the aid of extensive field data. One important component of GEORGIA DOSAG, our basic water quality model, is the equation used to predict flow through velocity. However, Georgia is characterized by wide physiographic diversity which reduces the effectiveness of uncalibrated velocity equations. Using 15 years of accumulated time-of-travel studies, a series of empirical velocity equations were developed and calibrated to various physiographic conditions in Georgia. Equations are available for each major soil province and for three stream flow ranges within each province - Q<100 cfs, 100<Q<1000 cfs, and Q>1000 cfs. Now, in the absence of extensive field data, we have data based velocity equations which can be tailored to each site under study.  相似文献   

10.
Thornton, Christopher I., Anthony M. Meneghetti, Kent Collins, Steven R. Abt, and S. Michael Scurlock, 2011. Stage‐Discharge Relationships for U‐, A‐, and W‐Weirs in Un‐submerged Flow Conditions. Journal of the American Water Resources Association (JAWRA) 47(1):169‐178. DOI: 10.1111/j.1752‐1688.2010.00501.x Abstract: Instream rock weirs are routinely placed into stream systems to provide grade control, reduce streambank erosion, provide energy dissipation, and allow fish passage. However, design and performance criteria for site specific applications are often anecdotal or qualitative in nature, and based upon the experience of the design team. A study was conducted to develop generic state‐discharge relationships for U‐, A‐, and W‐weirs. A laboratory testing program was performed in which scaled, near‐prototype U‐, A‐, and W‐rock weir structures were constructed in 11 configurations. Each configuration encompassed a unique weir shape, bed material, and/or bed slope. Thirty‐one tests were conducted in which each structure was subjected to a sequence of predetermined discharges that minimally included the equivalent of 1/3 bankfull, 2/3 bankfull, and bankfull conditions. All tests were performed in subcritical, un‐submerged flow conditions. Stage‐discharge relationships were developed using multivariant, power regression techniques for each of the U‐, A‐, and W‐rock weirs as a function of the effective weir length, flow depth, mean weir height, rock size, and discharge coefficient. Unique coefficient expressions were developed for each weir shape, and a single discharge coefficient was proposed applicable to the weirs for determining the channel stage‐discharge rating.  相似文献   

11.
Abstract: The hydrological simulation program – FORTRAN (HSPF) is a comprehensive watershed model that employs depth‐area‐volume‐flow relationships known as the hydraulic function table (FTABLE) to represent the hydraulic characteristics of stream channel cross‐sections and reservoirs. An accurate FTABLE determination for a stream cross‐section site requires an accurate determination of mean flow depth, mean flow width, roughness coefficient, longitudinal bed slope, and length of stream reach. A method that uses regional regression equations to estimate mean flow depth, mean flow width, and roughness coefficient is presented herein. FTABLES generated by the proposed method (Alternative Method) and FTABLES generated by Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) were compared. As a result, the Alternative Method was judged to be an enhancement over the BASINS method. First, the Alternative Method employs a spatially variable roughness coefficient, whereas BASINS employs an arbitrarily selected spatially uniform roughness coefficient. Second, the Alternative Method uses mean flow width and mean flow depth estimated from regional regression equations whereas BASINS uses mean flow width and depth extracted from the National Hydrography Dataset (NHD). Third, the Alternative Method offers an option to use separate roughness coefficients for the in‐channel and floodplain sections of compound channels. Fourth, the Alternative Method has higher resolution in the sense that area, volume, and flow data are calculated at smaller depth intervals than the BASINS method. To test whether the Alternative Method enhances channel hydraulic representation over the BASINS method, comparisons of observed and simulated streamflow, flow velocity, and suspended sediment were made for four test watersheds. These comparisons revealed that the method used to estimate the FTABLE has little influence on hydrologic calibration, but greatly influences hydraulic and suspended sediment calibration. The hydrologic calibration results showed that observed versus simulated daily streamflow comparisons had Nash‐Sutcliffe efficiencies ranging from 0.50 to 0.61 and monthly comparisons had efficiencies ranging from 0.61 to 0.84. Comparisons of observed and simulated suspended sediments concentrations had model efficiencies ranging from 0.48 to 0.56 for the daily, and 0.28 to 0.70 for the monthly comparisons. The overall results of the hydrological, hydraulic, and suspended sediment concentration comparisons show that the Alternative Method yielded a relatively more accurate FTABLE than the BASINS method. This study concludes that hydraulic calibration enhances suspended sediment simulation performance, but even greater improvement in suspended sediment calibration can be achieved when hydrological simulation performance is improved. Any improvements in hydrological simulation performance are subject to improvements in the temporal and spatial representation of the precipitation data.  相似文献   

12.
Abstract: A discharge rating is a relationship between stage and discharge at a specific point in a river stream or lake outlet structure. Rating curves are useful for interpolating and perhaps extrapolating flow measurements and for use directly in storage routing models. However, rating data and stations are limited. A generalized nondimensional mathematical expression that describes the rating relation of depth and discharge has been developed and tested against observations from 46 stations in West‐Central Florida. Three approaches were tested in sequence to select the best fit. The proposed model is a log‐linear equation with zero intercept and a slope that fits more than 50% of the stations were analyzed. The model is normalized by the depth and discharge values at 10% exceedance from data published by the U.S. Geological Survey. For ungauged applications, Q10 and d10 were derived from a relationship shown to be reasonably well correlated to the watershed drainage area. The average relative error for this parameter set shows that for the flow range up to the Q10 discharge, better than 30% agreement with the USGS rating data can be expected for about 50% of the stations. Further analysis is required to determine why so many stations exhibit such similar behavior and to identify the criteria or parameters governing the differences.  相似文献   

13.
Riparian wetlands containing springs are thought to be ineffective at removing nitrate because contact times between the upwelled ground water and the underlying microbially active soils are short. Tracer experiments using lithium bromide (LiBr) and nitrate (NO3-N) injected at the surface were used to quantify residence times and NO3-N removal in a riparian swale characteristic of New Zealand hill-country pasture. An experimental enclosure was used with collecting trays at the downstream end to measure flow and concentration, shallow wells to measure subsurface concentrations, and an array of logging conductivity probes to monitor tracer continuously. The majority of added tracer reached the outlet more slowly than could be explained by surface flow, but more quickly than could be explained by Darcy seepage flow. There was evidence from the wells of tracer diffusing vertically to a depth of at least 5 cm into the surface soil layer, which was permanently saturated and highly porous. During dry weather 24 +/- 9% of added NO3-N was removed over a distance of 1.5 m largely by denitrification. The net uptake length coefficient for this wetland (K = 0.08 +/- 0.03 m(-1)) is slightly higher than the range (K = 0.01-0.07 m(-1)) measured in a small stream channel infested with macrophytes. Nitrate removal is expected to decrease with increasing flow. Seepage flow is estimated to have removed only 7 +/- 4% of the added NO3-N and we hypothesize that vertical diffusion substantially increases NO3-N removal in this type of wetland. Riparian wetlands with springs and surface flows should not be dismissed as having low NO3-N removal potential without checking whether there is significant vertical mixing.  相似文献   

14.
ABSTRACT: A study was conducted in which 66 Parshall flumes used for agricultural flow measurement were assessed for physical integrity, settlement, and submergence. A total of 292 physical defects was documented. A flow measurement error analysis was performed indicating that 52 percent of the flumes measured flow beyond ±3 percent of the correct value and 41 percent of the flumes measured flow beyond ±5 percent. The findings indicate that the infrastructure is aging. The flow measurement system comprised of flumes no longer provide an accurate accounting of water through the distribution network.  相似文献   

15.
Abstract: Regional curves, which relate bankfull channel dimensions and discharge to watershed drainage area, are developed to aid in identifying the bankfull stage in ungaged watersheds, and estimating the bankfull discharge and dimensions for river studies and natural channel design applications. This study assessed 26 stable stream reaches in two hydro‐physiographic regions of the Florida Coastal Plain: the Northwest Florida Coastal Plain (NWFCP) and the North Florida Coastal Plain (NFCP). Data from stream reaches in Georgia and Alabama were also used to develop the Florida regional curves, since they are located in the same hydro‐physiographic region. Reaches were selected based on the presence of U.S. Geological Survey gage stations and indicators of limited watershed development (e.g., <10% impervious surface). Analyses were conducted to determine bankfull channel dimensions, bankfull discharge, average channel slope, and Rosgen stream classification. Based on these data, significant relationships were found between bankfull cross‐sectional area, width, mean depth, and discharge as a function of drainage area for both regions. Data from this study suggested that bankfull discharges and channel dimensions were larger from NWFCP streams than from Coastal Plain streams in North Carolina and Maryland. Bankfull discharges were similar between NFCP and Georgia coastal plain streams; therefore, the data were combined into one regional curve. In addition, the data were stratified by Rosgen stream type. This stratification strengthened the relationships of bankfull width and mean depth as a function of drainage area.  相似文献   

16.
Past research on fluvial dynamics at the confluence of two alluvial rivers has mainly focused on downstream flow structure and bed scoring, often using laboratory experiments and numerical modeling. Little is investigated about yearly and episodic dynamics of confluence mouth bars that can affect downstream morphology using field measurements. In this study, we analyzed the migration of a confluence mouth bar of two free meandering alluvial rivers, the Amite and Comite Rivers in coastal Louisiana, USA from 2002 to 2017. Remote sensing images were utilized to investigate the decade‐long morphologic changes. To assess episodic dynamics, we employed terrestrial laser scanning measurements to acquire high‐accuracy digital elevation models at the confluence before and after three floods in 2017. Our study found that the Amite‐Comite confluence mouth bar migrated downstream 55 m in the past 15 years, and its angle reduced by 55° from 100° to 45°. The fast migration was a result of sediment deposition and channel deformation around the confluence mainly during the years when the tributary‐to‐main channel discharge was lower (<0.25). The study further reveals that a single moderate flood could strongly affect the mouth bar, as shown by an increase of the projected surface area by 114% and an increase of volume of the confluence mouth bar by 68%.  相似文献   

17.
Studies were conducted in a closed system recirculating research flume to evaluate the relative effects of high intensity rainfall on von Karman's universal constant and the sediment transport capacity of shallow flow. The tests in this study were conducted at flow depths of 0.3 ft and less with discharges less than 0.5 cfs. The point velocities in the flow were determined with a Pace CD-25 pressure transducer and an inclined manometer connected in parallel to a Pitot-static tube of the standard Prandtl design. Regression analyses were performed on the velocity data to determine the best fit dimensionless velocity curve on semilogarithmic paper. Von Karman's universal constant was then evaluated from the slope of the regression line. Point sediment samples were siphoned from the flow with a stainless steel-pipette sediment sampler. Sediment concentrations were found with a filtering technique. Sediment samples were taken with and without rainfall to evaluate the relative effect of the rainfall on the transport capacity of shallow flow.  相似文献   

18.
ABSTRACT: The non-Fickian nature of the longitudinal dispersion in natural channels during low flow has been investigated using both laboratory experiments and the numerical solution of the proposed mathematical model which is based on a set of mass balance equations describing the dispersion and mass exchange mechanisms. Laboratory experiments, which involved collection of channel geometry, hydraulic, and dye dispersion test data, were conducted to obtain sets of experimental data on a model of four pool and riffle sequences in a 161-ft long tilting flume in the Hydrosystems Laboratory at the University of Illinois at Urbana-Champaign. The experimental results indicate that flow over the model pool-riffle sequences is highly nonuniform. Concentration-time curves are significantly skewed with long tails. The mixing and dispersion in the laboratory channel was simulated using a numerical solution of the mathematical model in which the finite difference method developed by Stone and Brian (1963) was used as a solution technique. The comparison between measured and predicted concentration-time curves shows that there is a good level of agreement in the general shape, peak concentration, and time to peak. The proposed model shows significant improvement over the conventional Fickian model in predicting dispersion processes in natural channels under low flow conditions.  相似文献   

19.
ABSTRACT: The dynamic relationship between stage and discharge which is unique to a particular flood for a selected station along the river can be determined via a mathematical model based on the complete one-dimensional equations of unsteady flow, i.e., the equations for the conservation of mass and momentum of the flood wave, and the Manning equation which accounts for energy losses. By assuming the bulk of the flood wave moves as a kinematic wave, the need for spatial resolution of the flood can be eliminated, and only the time variation of either the discharge or stage at the selected station is necessary for the computation of the other. The mathematical model can be used in river forecasting to convert the forecast discharge hydrograph into a stage hydrograph which properly reflects the unique dynamic stage-discharge relationship produced by the variable energy slope of the flood discharge. The model can be used also in stream gaging to convert a recorded stage hydrograph into a discharge hydrograph which properly accounts for the effects of unsteady flow. The model is applied to several observed floods at selected stations along the Lower Mississippi, Red, and Atchafalaya Rivers. The root mean square errors between observed and computed discharges are in the range of 3 to 7 percent, values well within the accuracy of the observations. A simple, easily-applied graphical procedure is also provided for estimating the magnitude of the effect of the unsteady flow on stage-discharge ratings. As a general rule, the dynamic effect may be significant if the channel bottom slope is less than 0.001 ft/ft (about 5 ft/mi) when the rate of change of stage is greater than about 0.10 ft/hr.  相似文献   

20.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号