首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
ABSTRACT: Remotely sensed soil moisture data measured during the Southern Great Plains 1997 (SGP97) experiment in Oklahoma were used to characterize antecedent soil moisture conditions for the Soil Conservation Service (SCS) curve number method. The precipitation‐adjusted curve number and the soil moisture were strongly related (r2= 0.70). Remotely sensed soil moisture fields were used to adjust the curve numbers and the runoff estimates for five watersheds, in the Little Washita watershed; the results ranged from 2.8 km2 to 601.6 km2. The soil moisture data were applied at two spatial scales, a finer one (800 m) measuring spatial resolution and a coarser one (28 km). The root mean square error (RMSE) and the mean absolute error (MAE) of the runoff estimated by the standard SCS method was reduced by nearly 50 percent when the 800 m soil moisture data were used to adjust the curve number. The coarser scale soil moisture data also significantly reduced the error in the runoff predictions with 41 percent and 28 percent reductions in MAE and RMSE, respectively. The results suggest that remote sensing of soil moisture, when combined with the SCS method, can improve rainfall runoff predictions at a range of spatial scales.  相似文献   

2.
Large area soil moisture estimations are required to describe input to cloud prediction models, rainfall distribution models, and global crop yield models. Satellite mounted microwave sensor systems that as yet can only detect moisture at the surface have been suggested as a means of acquiring large area estimates. Relations previously discovered between microwave emission at the 1.55 cm wavelength and surface moisture as represented by an antecedent precipitation index were used to provide a pseudo infiltration estimation. Infiltration estimates based on surface wetness on a daily basis were then used to calculate the soil moisture in the surface 0–23 cm of the soil by use of a modified antecedent precipitation index. Reasonably good results were obtained (R2= 0.7162) when predicted soil moisture for the surface 23 cm was compared to measured moisture. Where the technique was modified to use only an estimate of surface moisture each three days an R2 value of 0.7116 resulted for the same data set. Correlations between predicted and actual soil moisture fall off rapidly for repeat observations more than three days apart. The algorithms developed in this study may be used over relatively flat agricultural lands to provide improved estimates of soil moisture to a depth greater than the depth of penetration for the sensor.  相似文献   

3.
ABSTRACT: Detailed measurements of soil moisture and ET in semiarid forest environments have not been widely reported in the literature. In this study, soil moisture and water balance components were measured over a four‐year period on a semiarid ponderosa pine hillslope, with evapotranspiration (ET) determined as the residual of measured precipitation, runoff, and change in soil moisture storage. ET accounts for approximately 95 percent of the water budget and has a distinctly bimodal annual pattern, with peaks occurring after spring snowmelt and during the late summer monsoon season, periods that coincide with high soil moisture. Weekly growing season ET rates determined by the hillslope water balance are found to be invariably below calculated potential rates. Normalized ET rates are linearly correlated (r2= 0.62) with soil moisture; therefore, a simple linear relation is proposed. Growing season soil moisture dynamics were modeled based on this relation. Results are in fair agreement (r2= 0.63) with the observed soil moisture data over the four growing seasons; however, for two dry summers with little surface runoff, much better results (r2 > 0.90) were obtained.  相似文献   

4.
ABSTRACT: A synthetic triangular hyetograph for a large data base of Texas rainfall and runoff is needed. A hyetograph represents the temporal distribution of rainfall intensity at a point or over a watershed during a storm. Synthetic hyetographs are estimates of the expected time distribution for a design storm and principally are used in small watershed hydraulic structure design. A data base of more than 1,600 observed cumulative hyetographs that produced runoff from 91 small watersheds (generally less than about 50 km2) was used to provide statistical parameters for a simple triangular shaped hyetograph model. The model provides an estimate of the average hyetograph in dimensionless form for storm durations of 0 to 24 hours and 24 to 72 hours. As a result of this study, the authors concluded that the expected dimensionless cumulative hyetographs of 0 to 12 hour and 12 to 24 hour durations were sufficiently similar to be combined with minimal information loss. The analysis also suggests that dimensionless cumulative hyetographs are independent of the frequency level or return period of total storm depth and thus are readily used for many design applications. The two triangular hyetographs presented are intended to enhance small watershed design practice in applicable parts of Texas.  相似文献   

5.
Abstract:  Automated electronic soil moisture sensors, such as time domain reflectometry (TDR) and capacitance probes are being used extensively to monitor and measure soil moisture in a variety of scientific and land management applications. These sensors are often used for a wide range of soil moisture applications such as drought forage prediction or validation of large‐scale remote sensing instruments. The convergence of three different research projects facilitated the evaluation and comparison of three commercially available electronic soil moisture probes under field application conditions. The sensors are all installed in shallow soil profiles in a well instrumented small semi‐arid shrub covered subwatershed in Southeastern Arizona. The sensors use either a TDR or a capacitance technique; both of which indirectly measure the soil dielectric constant to determine the soil moisture content. Sensors are evaluated over a range of conditions during three seasons comparing responses to natural wetting and drying sequences and using water balance and infiltration simulation models. Each of the sensors responded to the majority of precipitation events; however, they varied greatly in response time and magnitude from each other. Measured profile soil moisture storage compared better to water balance estimates when soil moisture in deeper layers was accounted for in the calculations. No distinct or consistent trend was detected when comparing the responses from the sensors or the infiltration model to individual precipitation events. The results underscore the need to understand how the sensors respond under field application and recognize the limitations of soil moisture sensors and the factors that can affect their accuracy in predicting soil moisture in situ.  相似文献   

6.
This study assesses a large‐scale hydrologic modeling framework (WRF‐Hydro‐RAPID) in terms of its high‐resolution simulation of evapotranspiration (ET) and streamflow over Texas (drainage area: 464,135 km2). The reference observations used include eight‐day ET data from MODIS and FLUXNET, and daily river discharge data from 271 U.S. Geological Survey gauges located across a climate gradient. A recursive digital filter is applied to decompose the river discharge into surface runoff and base flow for comparison with the model counterparts. While the routing component of the model is pre‐calibrated, the land component is uncalibrated. Results show the model performance for ET and runoff is aridity‐dependent. ET is better predicted in a wet year than in a dry year. Streamflow is better predicted in wet regions with the highest efficiency ~0.7. In comparison, streamflow is most poorly predicted in dry regions with a large positive bias. Modeled ET bias is more strongly correlated with the base flow bias than surface runoff bias. These results complement previous evaluations by incorporating more spatial details. They also help identify potential processes for future model improvements. Indeed, improving the dry region streamflow simulation would require synergistic enhancements of ET, soil moisture and groundwater parameterizations in the current model configuration. Our assessments are important preliminary steps towards accurate large‐scale hydrologic forecasts.  相似文献   

7.
ABSTRACT: Distributed hydrologic models which link seasonal streamflow and soil moisture patterns with spatial patterns of vegetation are important tools for understanding the sensitivity of Mediterranean type ecosystems to future climate and land use change. RHESSys (Regional Hydro‐Ecologic Simulation System) is a coupled spatially distributed hydroecological model that is designed to be able to represent these feedbacks between hydrologic and vegetation carbon and nutrient cycling processes. However, RHESSys has not previously been applied to semiarid shrubland watersheds. In this study, the hydrologic submodel of RHESSys is evaluated by comparing model predictions of monthly and annual streamflow to stream gage data and by comparing RHESSys behavior to that of another hydrologic model of similar complexity, MIKESHE, for a 34 km2 watershed near Santa Barbara, California. In model intercomparison, the differences in predictions of temporal patterns in streamflow, sensitivity of model predictions to calibration parameters and landscape representation, and differences in model estimates of soil moisture patterns are explored. Results from this study show that both models adequately predict seasonal patterns of streamflow response relative to observed data, but differ significantly in terms of estimates of soil moisture patterns and sensitivity of those patterns to the scale of landscape tessellation used to derive spatially distributed elements. This sensitivity has implications for implementing RHESSys as a tool to investigate interactions between hydrology and ecosystem processes.  相似文献   

8.
Abstract: The potential of remotely sensed time series of biophysical states of landscape to characterize soil moisture condition antecedent to radar estimates of precipitation is assessed in a statistical prediction model of streamflow in a 1,420 km2 watershed in south‐central Texas, Moderate Resolution Imaging Spectroradiometer (MODIS) time series biophysical products offer significant opportunities to characterize and quantify hydrologic state variables such as land surface temperature (LST) and vegetation state and status. Together with Next Generation Weather Radar (NEXRAD) precipitation estimates for the period 2002 through 2005, 16 raw and deseasoned time series of LST (day and night), vegetation indices, infrared reflectances, and water stress indices were linearly regressed against observed watershed streamflow on an eight‐day aggregated time period. Time offsets of 0 (synchronous with streamflow event), 8, and 16 days (leading streamflow event) were assessed for each of the 16 parameters to evaluate antecedent effects. The model results indicated a reasonable correlation (r2 = 0.67) when precipitation, daytime LST advanced 16 days, and a deseasoned moisture stress index were regressed against log‐transformed streamflow. The estimation model was applied to a validation period from January 2006 through March 2007, a period of 12 months of regional drought and base‐flow conditions followed by three months of above normal rainfall and a flood event. The model resulted in a Nash‐Sutcliffe estimation efficiency (E) of 0.45 for flow series (in log‐space) for the full 15‐month period, ?0.03 for the 2006 drought condition period, and 0.87 for the 2007 wet condition period. The overall model had a relative volume error of ?32%. The contribution of parameter uncertainties to model discrepancy was evaluated.  相似文献   

9.
A multi‐scale soil moisture monitoring strategy for California was designed to inform water resource management. The proposed workflow classifies soil moisture response units (SMRUs) using publicly available datasets that represent soil, vegetation, climate, and hydrology variables, which control soil water storage. The SMRUs were classified, using principal component analysis and unsupervised K‐means clustering within a geographic information system, and validated, using summary statistics derived from measured soil moisture time series. Validation stations, located in the Sierra Nevada, include transect of sites that cross the rain‐to‐snow transition and a cluster of sites located at similar elevations in a snow‐dominated watershed. The SMRUs capture unique responses to varying climate conditions characterized by statistical measures of central tendency, dispersion, and extremes. A topographic position index and landform classification is the final step in the workflow to guide the optimal placement of soil moisture sensors at the local‐scale. The proposed workflow is highly flexible and can be implemented over a range of spatial scales and input datasets can be customized. Our approach captures a range of soil moisture responses to climate across California and can be used to design and optimize soil moisture monitoring strategies to support runoff forecasts for water supply management or to assess landscape conditions for forest and rangeland management.  相似文献   

10.
Effects of proportion of watersheds in forest and watershed physiographic factors on mean annual streamflow (1965-76), median flow, and 12 flood flow characteristics were regionally analyzed for 19 unregulated streams in East Texas. Annual streamflow increased with decreasing proportion of forest area. Differences in annual streamflow between full forest cover and bare watersheds could be as much as 200 mm. Other things being equal, the minimum watershed area required to generate 0.142 cm (5 cfs), a criterion used by the U.S. Corps of Engineering in regulating dredge and fill activity for water pollution abatement in East Texas streams, is 70 km2 (27 mi2). Of the 31 physio-climatic parameters analyzed, watershed area, percent forest area, shape index, spring precipitation, and annual temperature were the most significant in affecting streamflow characteristics in East Texas. Using 2-3 of these five variables, all of the 14 streamflow characteristics can be estimated with accuracy ranging from acceptable to excellent levels.  相似文献   

11.
ABSTRACT: Loading functions are proposed as a general model for estimating monthly nitrogen and phosphorus fluxes in stream flow. The functions have a simple mathematical structure, describe a wide range of rural and urban nonpoint sources, and couple surface runoff and ground water discharge. Rural runoff loads are computed from daily runoff and erosion and monthly sediment yield calculations. Urban runoff loads are based on daily nutrient accumulation rates and exponential wash off functions. Ground water discharge is determined by lumped parameter unsaturated and saturated zone soil moisture balances. Default values for model chemical parameters were estimated from literature values. Validation studies over a three-year period for an 850 km2 watershed showed that the loading functions explained at least 90 percent of the observed monthly variation in dissolved and total nitrogen and phosphorus fluxes in stream flow. Errors in model predictions of mean monthly fluxes were: dissolved phosphorus - 4 percent; total phosphorus - 2 percent; dissolved nitrogen - 18 percent; and total nitrogen - 28 percent. These results were obtained without model calibration.  相似文献   

12.
Growing water scarcity and global climate change call for more efficient alternatives of water conservation; rainwater harvesting (RWH) is the most promising alternative among others. However, the assessment of RWH potential and the selection of suitable sites for RWH structures are very challenging for the water managers, especially on larger scales. This study addresses this challenge by presenting a fairly robust methodology for evaluating RWH potential and identifying sites/zones for different RWH structures using geospatial and multicriteria decision analysis (MCDA) techniques. The proposed methodology is demonstrated using a case study. The remote sensing data and conventional field data were used to prepare desired thematic layers using ArcGIS© software. Distributed Curve Number method was used to calculate event-based runoffs, based on which annual runoff potential and runoff coefficient maps were generated in the GIS (geographic information system) environment. Thematic layers such as slope, drainage density, and runoff coefficient and their features were assigned suitable weights and then they were integrated in a GIS to generate a RWH potential map of the study area. Zones suitable for different RWH structures were also identified, together with suitable sites for constructing recharge structures (check dams and percolation tanks along the streams). It was found that the study area can be classified into three RWH potential zones: (a) ‘good’ (241 km2), (b) ‘moderate’ (476 km2), and (c) ‘poor’ (287 km2). About 3% of the study area (30 km2) is suitable for constructing farm ponds, while percolation tanks (on the ground) can be constructed in about 2.7% of the area (27 km2). Of the 83 sites identified for the recharge structures, 32 recharge sites are specially suited to the inhabitants because of their proximity. It is concluded that the integrated geospatial and MCDA techniques offer a useful and powerful tool for the planning of rainwater harvesting at a basin or sub-basin scale.  相似文献   

13.
Groundwater contamination by agricultural chemicals is a major environmental pollution issue nation-wide. The regulatory agencies of towns and counties face the problem of finding a methodology for assessing the ground-water contamination potential of a large number of agricultural pesticides. Because of the spatial nature of the problem and the limited data availability for comprehensive pesticide movement models, a contamination potential index was employed for preliminary assessment. A specially designed geographic information system was used to create ground-water contamination likelihood maps for a 1500 km2 area. The results suggest that this methodology can be used successfully for evaluating the relative contamination potential of a large number of pesticides over large areas with limited input data. A tentative approach for using this method for monitoring and registration of pesticides is also discussed.  相似文献   

14.
In this study, we evaluated the European Space Agency Climate Change Initiative soil moisture product v02.1 (ESA CCI SM v02.1) using in situ observations collected at 547 stations in China from 1991 to 2013. A conventional validation was first conducted, and the triple collocation errors of ESA CCI SM and the European Centre for Medium Range Weather Forecasting reanalysis data were approximately 0.053 and 0.050 m3/m3, respectively. To obtain more reliable validation results, the average soil moisture of the in situ observations per ESA CCI SM pixel was also used as the validation sites. Variance reduction factor (VRF) was adopted to quantify the accuracy of the soil moisture validation sites, and the average VRF was estimated at 4.88%. The validation results were enhanced by excluding validation sites with VRF errors greater than 5% from the statistical analysis. Although the ESA CCI SM underestimated the in situ observations with a Bias of 0.05 m3/m3, a moderately high correlation coefficient of 0.44 and a relatively small unbiased root‐mean‐square difference of 0.05 m3/m3 were observed. This study provides information on the utilization of ESA CCI SM for ecological protection, climate change, and hydrological forecasting. It also suggests the adoption of VRF for future error corrections of satellite‐based products.  相似文献   

15.
Anning, David W., 2011. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States. Journal of the American Water Resources Association (JAWRA) 47(5):1087‐1109. DOI: 10.1111/j.1752‐1688.2011.00579.x Abstract: Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area‐normalized reach‐catchment delivery rates of dissolved solids to streams ranged from <10 (kg/year)/km2 for catchments with little or no natural or human‐related solute sources in them to 563,000 (kg/year)/km2 for catchments that were almost entirely cultivated land. For the region as a whole, geologic units contributed 44% of the dissolved‐solids deliveries to streams and the remaining 56% of the deliveries came from the release of solutes through irrigation of cultivated and pasture lands, which comprise only 2.5% of the land area. Dissolved‐solids accumulation is manifested as precipitated salts in the soil or underlying sediments, and (or) dissolved salts in soil‐pore or sediment‐pore water, or groundwater, and therefore represents a potential for aquifer contamination. Accumulation rates were <10,000 (kg/year)/km2 for many hydrologic accounting units (large river basins), but were more than 40,000 (kg/year)/km2 for the Middle Gila, Lower Gila‐Agua Fria, Lower Gila, Lower Bear, Great Salt Lake accounting units, and 247,000 (kg/year)/km2 for the Salton Sea accounting unit.  相似文献   

16.
Accurate records of high‐resolution rainfall fields are essential in urban hydrology, and are lacking in many areas. We develop a high‐resolution (15 min, 1 km2) radar rainfall data set for Charlotte, North Carolina during the 2001‐2010 period using the Hydro‐NEXRAD system with radar reflectivity from the National Weather Service Weather Surveillance Radar 1988 Doppler weather radar located in Greer, South Carolina. A dense network of 71 rain gages is used for estimating and correcting radar rainfall biases. Radar rainfall estimates with daily mean field bias (MFB) correction accurately capture the spatial and temporal structure of extreme rainfall, but bias correction at finer timescales can improve cold‐season and tropical cyclone rainfall estimates. Approximately 25 rain gages are sufficient to estimate daily MFB over an area of at least 2,500 km2, suggesting that robust bias correction is feasible in many urban areas. Conditional (rain‐rate dependent) bias can be removed, but at the expense of other performance criteria such as mean square error. Hydro‐NEXRAD radar rainfall estimates are also compared with the coarser resolution (hourly, 16 km2) Stage IV operational rainfall product. Stage IV is adequate for flood water balance studies but is insufficient for applications such as urban flood modeling, in which the temporal and spatial scales of relevant hydrologic processes are short. We recommend the increased use of high‐resolution radar rainfall fields in urban hydrology.  相似文献   

17.
ABSTRACT: During August and September 1973, the Indus River Valley of Pakistan experienced one of the largest floods on record, resulting in damages to homes, businesses, public works, and crops amounting to millions of rupees. Tremendous areas of lowlands were inundated along the Indus River and major tributaries. Landsat data made it possible to easily measure the extent of flooding, totaling about 20,000 km2 within an area of about 400,000 km2 south from the Punjab to the Arabian Sea. The Indus River data were used to continue experimentation in the development of rapid, accurate, and inexpensive optical techniques of flood mapping by satellite begun in 1973 for the Mississipi River floods. The research work on the Indus River not resulted in the development of more effective procedures for optical processing of flood data and synoptically depicting flooding, but also provided potentially valuable ancillary information concerning the hydrology of much of the Indus River Basin.  相似文献   

18.
Suspended sediment from forested and agricultural watersheds was sampled over a five-year period on the island of Oahu. A variety of storm conditions were sampled, giving a measure of the extreme variability in suspended sediment production. Total annual suspended sediment from all watersheds sampled ranged from 8400 kg/km2 to 617,000 kg/km2. Normally, about 90 percent of the total suspended sediment was produced during less than 2 percent of the time. Suspended sediment concentrations rapidly increased during rising stream flow resulting from rain storms. Time to peak of less than two hours is common, with a similarly rapid return to prestorm conditions. The data presented indicate the great variability of suspended sediment yields, making establishment of effective standards difficult.  相似文献   

19.
ABSTRACT: In a cooperative demonstration project, NASA and the U.S. Army Corps of Engineers (Corps) compared conventional and Landsat-derived land-use data for use in hydrologic models, and the resulting discharge frequency curves were analyzed. When a grid-based data-management system was used on a cell-by-cell basis (size about 1.1 acres or 0.45 hectare), Landsat classification accuracy was only 64 percent, but, when the grid cells were aggregated into watersheds, the classification accuracy increased to about 95 percent. When both conventional and Landsat land-use data were input to the HEC-1 model for generating discharge frequency curves, the differences in calculated discharge were judged insignificant for subbasins as small as 1.0mi2 (2.59 km2). For basins larger than 10mi2 (25.9km2), use of the Landsat approach is more cost-effective than use of conventional methods. Digital Landsat data can also be used effectively by local and regional agencies for hydrologic analysis by incorporating the data into grid-based data-management systems. The transfer of this new technology is well under way through inclusion in some Corps training courses and through use by both county government personnel and private consultants.  相似文献   

20.
The Guinean rain forest (GRF) of West Africa, identified over 20 years ago as a global biodiversity hotspot, had reduced to 113,000 km2 at the start of the new millennium which was 18% of its original area. The principal driver of this environmental change has been the expansion of extensive smallholder agriculture. From 1988 to 2007, the area harvested in the GRF by smallholders of cocoa, cassava, and oil palm increased by 68,000 km2. Field results suggest a high potential for significantly increasing crop yields through increased application of seed-fertilizer technologies. Analyzing land-use change scenarios, it was estimated that had intensified cocoa technology, already developed in the 1960s, been pursued in Cote d’Ivoire, Ghana, Nigeria and Cameroon that over 21,000 km2 of deforestation and forest degradation could have been avoided along with the emission of nearly 1.4 billion t of CO2. Addressing the low productivity of agriculture in the GRF should be one of the principal objectives of REDD climate mitigation programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号