首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives were to (1) delineate the complex set of rules governing the fate and transfer of water rights as agricultural land is urbanized in Texas and New Mexico in the United States and Chihuahua in Mexico and (2) estimate the change in water use as a result of such urbanization. Important additional determinants of water use in the region include intensification of agriculture and the hydroschizophrenic policy framework. We conducted interviews with key informants to identify the possible outcomes for changes in water rights as land is urbanized. We constructed decision trees for each of the three jurisdictions, Chihuahua, Texas, and New Mexico, that identified the possible outcomes from urbanization. For each of the possible outcomes in the decision tree, we estimated a range of potential water use outcomes and the most likely water use outcome on a per unit of land area basis. Results show that urbanization of agricultural land has almost no impact on the aggregate demand for or use of surface water. However, the impacts of urbanization on groundwater use vary considerably over the region from Texas to New Mexico to Chihuahua. In New Mexico and Chihuahua where groundwater rights can be leased or sold to other users, the likely impact is a net increase in groundwater use as land is urbanized, ranging from 0 to 3,000 m3/ha in New Mexico and averaging 3,000 m3/ha or more in Chihuahua. In Texas, there is a net benefit in groundwater savings, but those savings are subject to being offset by increased groundwater pumping to meet the needs of expanding pecan production. The net result is continued groundwater depletion, threatening the life of the transboundary aquifers, the Hueco Bolson and the Mesilla Bolson, in the Middle Rio Grande basin (defined as the part of the basin between Elephant Butte Reservoir in New Mexico to the confluence of the river with the Rio Conchos from Mexico).  相似文献   

2.
ABSTRACT: Loading rates derived from monitoring natural runoff from selected land uses are compared. Land uses selected for evaluation are construction sites, barnyards, and agriculture (dairying). Runoff volumes, sediment, and nutrient fractions were monitored and expressed as areal loadings for comparison purposes. Sediment yield and total phosphorus (total P) loss was directly proportional to runoff (m3/ha). In decreasing order, the loadings for sediment and total P were as follows: construction site > barnyard > general dairying. Runoff from the barnyard area was approximately 10 times higher in soluble phosphorus and ammonium nitrogen than the other land uses under investigation. Areal loss for nitrate nitrogen was highest from the construction site and was attributed to the higher volume of runoff per unit area. Results show that barnyards in a dairying watershed are potentially a major source of sediment and nutrients, especially those dissolved fractions which have the potential for immediate water quality impacts. Relative to general agricultural land, urban construction sites also appear to be a major source of sediment and nutrients. As with barnyard sites, however, the effect of such sites on water quality likely depends on proximity to surface water bodies and other watershed characteristics affecting delivery ratios of contaminants.  相似文献   

3.
Schilling, Keith E., Thomas M. Isenhart, Jason A. Palmer, Calvin F. Wolter, and Jean Spooner, 2011. Impacts of Land‐Cover Change on Suspended Sediment Transport in Two Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 47(4):672‐686. DOI: 10.1111/j.1752‐1688.2011.00533.x Abstract: Suspended sediment is a major water quality problem, yet few monitoring studies have been of sufficient scale and duration to assess the effectiveness of land‐use change or conservation practice implementation at a watershed scale. Daily discharge and suspended sediment export from two 5,000‐ha watersheds in central Iowa were monitored over a 10‐year period (water years 1996‐2005). In Walnut Creek watershed, a large portion of land was converted from row crop to native prairie, whereas in Squaw Creek land use remained predominantly row crop agriculture. Suspended sediment loads were similar in both watersheds, exhibiting flashy behavior typical of incised channels. Modeling suggested that expected total soil erosion in Walnut Creek should have been reduced 46% relative to Squaw Creek due to changes in land use, yet measured suspended sediment loads showed no significant differences. Stream mapping indicated that Walnut Creek had three times more eroding streambank lengths than did Squaw Creek suggesting that streambank erosion dominated sediment sources in Walnut Creek and sheet and rill sources dominated sediment sources in Squaw Creek. Our results demonstrate that an accounting of all sources of sediment erosion and delivery is needed to characterize sediment reductions in watershed projects combined with long‐term, intensive monitoring and modeling to account for possible lag times in the manifestation of the benefits of conservation practices on water quality.  相似文献   

4.
Estuarine ecosystems are largely influenced by watersheds directly connected to them. In the Mobile Bay, Alabama watersheds we examined the effect of land cover and land use (LCLU) changes on discharge rate, water properties, and submerged aquatic vegetation, including freshwater macrophytes and seagrasses, throughout the estuary. LCLU scenarios from 1948, 1992, 2001, and 2030 were used to influence watershed and hydrodynamic models and evaluate the impact of LCLU change on shallow aquatic ecosystems. Overall, our modeling results found that LCLU changes increased freshwater flows into Mobile Bay altering temperature, salinity, and total suspended sediments (TSS). Increased urban land uses coupled with decreased agricultural/pasture lands reduced TSS in the water column. However, increased urbanization or agricultural/pasture land coupled with decreased forest land resulted in higher TSS concentrations. Higher sediment loads were usually strongly correlated with higher TSS levels, except in areas where a large extent of wetlands retained sediment discharged during rainfall events. The modeling results indicated improved water clarity in the shallow aquatic regions of Mississippi Sound and degraded water clarity in the Wolf Bay estuary. This integrated modeling approach will provide new knowledge and tools for coastal resource managers to manage shallow aquatic habitats that provide critical ecosystem services.  相似文献   

5.
One of the major environmental issues of concern to policy-makers is the increased vulnerability of ground water quality (GWQ). Another issue of equal interest is the sustainability of natural resources for future generations. To understand the sustainability of the natural resources such as water in general, one needs to understand the impact of future land use changes on the natural resources. This work proposes a methodology to address sustainability of GWQ considering land use changes, aquifer vulnerability to multiple contaminants, and public health risks. The methodology was demonstrated for the Sumas-Blaine aquifer in Washington State. The land transformation model predicted that nearly 60 percent of the land use practices would change in the Sumas-Blaine Aquifer by the year 2015. The accuracy of the LTM model predictions increased to greater levels as the spatial resolution was decreased. Aquifer vulnerability analysis was performed for major contaminants using the binary logistic regression (LR) method. The LR model, along with the predicted future land use, was used to estimate the future GWQ using two indices-carcinogenic and non-carcinogenic ground water qualities. Sustainability of GWQ was then analyzed using the concept of 'strong' sustainability. The sustainability map of GWQ showed improvements in many areas where urbanization is expected to occur. The positive impact of urbanization on GWQ is an indication of the extensive damage caused by existing agricultural activities in the study area.  相似文献   

6.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   

7.
The North American east coast (NAEC) region experienced significant climate and land‐use changes in the past century. To explore how these changes have affected land water cycling, the Dynamic Land Ecosystem Model (DLEM 2.0) was used to investigate the spatial and temporal variability of runoff and river discharge during 1901‐2010 in the study area. Annual runoff over the NAEC was 420 ± 61 mm/yr (average ± standard deviation). Runoff increased in parts of the northern NAEC but decreased in some areas of the southern NAEC. Annual freshwater discharge from the study area was 378 ± 61 km3/yr (average ± standard deviation). Factorial simulation experiments suggested that climate change and variability explained 97.5% of the interannual variability of runoff and also resulted in the opposite changes in runoff in northern and southern regions of the NAEC. Land‐use change reduced runoff by 5‐22 mm/yr from 1931 to 2010, but the impacts were divergent over the Piedmont region and Coastal Plain areas of the southern NAEC. Land‐use change impacts were more significant at local and watershed spatial scales rather than at regional scales. Different responses of runoff to changing climate and land‐use should be noted in future water resource management. Hydrological impacts of afforestation and deforestation as well as urbanization should also be noted by land‐use policy makers.  相似文献   

8.
Worldwide studies show 80%–90% of all sediments eroded from watersheds is trapped within river networks such as reservoirs, ponds, and wetlands. To represent the impact of impoundments on sediment routing in watershed modeling, Soil and Water Assessment Tool (SWAT) developers recommend to model reservoirs, ponds, and wetlands using impoundment tools (ITs). This study evaluates performance of SWAT ITs in the modeling of a small, agricultural watershed dominated by lakes and wetlands. The study demonstrates how to incorporate impoundments into the SWAT model, and discusses and evaluates involved parameters. The study then recommends an appropriate calibration sequence, i.e., landscape parameters calibration, followed by pond/wetlands calibration, then channel parameter calibrations, and lastly, reservoir parameter calibration. Results of this study demonstrate not following SWAT recommendation regarding modeling water land use as an impoundment depreciates SWAT performance, and may lead to misplaced calibration efforts and model over‐calibration. Further, the chosen method to model impoundments’ outflow significantly impacts sediment loads in the watershed, while streamflow simulation is not very sensitive. This study also allowed calculation of mass accumulation rates in modeled impoundments where the annual mass accumulation rate in wetlands (2.3 T/ha/yr) was 39% higher than mass accumulation rate in reservoirs (1.4 T/ha/yr).  相似文献   

9.
ABSTRACT: Erosion and sedimentation data from research watersheds in the Silver Creek Study Area in central Idaho were used to test the prediction of logging road erosion using the R1-R4 sediment yield model, and sediment delivery using the “BOISED” sediment yield prediction model. Three small watersheds were instrumented and monitored such that erosion from newly constructed roads and sediment delivery to the mouths of the watersheds could be measured for four years following road construction. The errors for annual surface erosion predictions for the two standard road tests ranged from +31.2 t/ha/yr (+15 percent) to -30.3 t/ha/yr (-63 percent) with an average of zero t/ha/yr and a standard deviation of the differences of 18.7 t/ha/yr. The annual prediction errors for the three watershed scale tests had a greater range from -40.8 t/ha/yr (-70 percent) to +65.3 t/ha/yr (+38 percent) with a mean of -1.9 t/ha/yr and a standard deviation of the differences of 25.2 t/ha/yr. Sediment yields predicted by BOISED (watershed scale tests) were consistently greater (average of 2.5 times) than measured sediment yields. Hillslope sediment delivery coefficients in BOISED appear to be overly conservative to account for average site conditions and road locations, and thus over-predict sediment delivery. Mass erosion predictions from BOISED appear to predict volume well (465 tonnes actual versus 710 tonnes predicted, or a 35 percent difference) over 15 to 20 years, however mass wasting is more episodic than the model predicts.  相似文献   

10.
Increasing concern about the problems caused by urban sprawl has encouraged development and implementation of smart growth approaches to land use management. One of the goals of smart growth is water resources protection, in particular minimizing the runoff impact of urbanization. To investigate the magnitude of the potential benefits of land use planning for water resources protection, possible runoff impacts of historical and projected urbanization were estimated for two watersheds in Indiana and Michigan using a long term hydrological impact analysis model. An optimization component allowed selection of land use change placements that minimize runoff increase. Optimizing land use change placement would have reduced runoff increase by as much as 4.9 percent from 1973 to 1997 in the Indiana study watershed. For nonsprawl and sprawl scenarios in the Michigan watershed for 1978 to 2040, optimizing land use change placement would have reduced runoff increase by 12.3 percent and 20.5 percent, respectively. The work presented here illustrates both an approach to assessing the magnitude of the impact of smart growth and the significant potential scale of smart growth in moderating runoff changes that result from urbanization. The results of this study have significant implications for urban planning.  相似文献   

11.
The potential impacts driven by climate variability and urbanization in the Boise River Watershed (BRW), located in southwestern Idaho, are evaluated. The outcomes from Global Circulation Models (GCMs) and land use and land cover (LULC) analysis have been incorporated into a hydrological and environmental modeling framework to characterize how climate variability and urbanization can affect the local hydrology and environment at the BRW. The combined impacts of future climate and LULC change are also evaluated relative to the historical baseline conditions. For modeling exercises, Hydrological Simulation Program‐Fortran (HSPF) is used in parallel computing and statistical techniques, including spatial downscaling and bias correlation, are employed to evaluate climate consequences derived from GCMs as well. The implications of climate variability and land use change driven by urbanization are then observed to evaluate how these overall global challenges can affect water quantity and quality conditions at the BRW. The results show the combined impacts of both climate change and urbanization can lead to more seasonal variability of streamflow (from ?27.5% to 12.5%) and water quality, including sediment (from ?36.5% to 49.3%), nitrogen (from ?24% to 124.2%), and phosphorus (from ?13.3% to 21.2%) during summer and early fall over the next several decades.  相似文献   

12.
Since the 1970s, the sediment flux of the Yellow River to the sea has shown a marked tendency to decrease, which is unfavorable for wetland protection and oil extraction in the Yellow River delta. Thus, an effort has been made to elucidate the relation between the sediment flux to the sea and the drainage basin factors including climate and human activities. The results show that the sediment flux to the sea responds to the changed precipitation in different ways for different runoff and sediment source areas in the drainage basin. If other factors are assumed to be constant, when the annual precipitation in the area between Longmen and Sanmenxia decreases by 10 mm, the sediment flux to the sea will decrease by 27.5 million t/yr; when the precipitation in the area between Hekouzhen and Longmen decreases by 10 mm, the sediment flux to the sea will decrease by 14.3 million t/yr; when the precipitation in the area above Lanzhou decreases by 10 mm, the sediment flux to the sea will decrease by 17.4 million t/yr. A multiple regression equation has been established between the sediment flux to the sea and the influencing factors, such as the area of land terracing and tree and grass planting, the area of the land created by the sediment trapped by check dams, the annual precipitation, and the annual quantity of water diversion by man. The equation may be used to estimate the change in the sediment flux to the sea when the influencing variables are further changed, to provide useful knowledge for the environmental planning of the Yellow River drainage basin and its delta.  相似文献   

13.
Long-term water quality records for assessing natural variability, impact of management, and that guide regulatory processes to safeguard water resources are rare for California oak woodland rangelands. This study presents a 20-yr record (1981-2000) of nitrate-nitrogen (NO(3)-N) and suspended sediment export from a typical, grazed oak woodland watershed (103 ha) in the northern Sierra Nevada foothills of California. Mean annual precipitation over the 20-yr period was 734 mm yr(-1) (range 366-1205 mm yr(-1)). Mean annual stream flow was 353 mm y(-1) (range 87-848 mm yr(-1)). Average annual stream flow was 48.1 +/- 16% of precipitation. Mean annual NO(3)-N export was 1.6 kg ha(-1) yr(-1) (range 0.18-3.6 kg ha(-1) yr(-1)). Annual NO(3)-N export significantly (P < 0.05) increased with increasing annual stream flow and precipitation. Mean daily NO(3)-N export was 0.004 kg ha(-1) d(-1) (range 10(-5) to 0.55 kg ha(-1) d(-1)). Mean annual suspended sediment export was 198 kg ha(-1) yr(-1) (range 23-479 kg ha(-1) yr(-1)). There was a positive relationship (P < 0.05) between annual suspended sediment export, annual stream flow and precipitation. Mean daily suspended sediment export was 0.54 kg ha(-1) d(-1) (range 10(-4) to 155 kg ha(-1) d(-1)). Virtually no sediment was exported during the dry season. The large variation in daily and annual fluxes highlights the necessity of using long-term records to establish quantitative water quality targets for rangelands and demonstrates the difficulty of designing a water quality monitoring program for these ecosystems.  相似文献   

14.
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.  相似文献   

15.
Soil erosion is a serious problem in areas with expanding construction, agricultural production, and improper storm water management. It is important to understand the major processes affecting sediment delivery to surficial water bodies in order to tailor effective mitigation and outreach activities. This study analyzes how naturally occurring and anthropogenic influences, such as urbanization and soil disturbance on steep slopes, are reflected in the amount of soil erosion and sediment delivery within sub-watershed-sized areas. In this study, two sub-watersheds of the Rappahannock River, Horsepen Run and Little Falls Run, were analyzed using the Revised Universal Soil Loss Equation (RUSLE) and a sediment delivery ratio (SDR) to estimate annual sediment flux rates. The RUSLE/SDR analyses for Horsepen Run and Little Falls Run predicted 298 Mg/y and 234 Mg/y, respectively, but nearly identical per-unit-area sediment flux rates of 0.15 Mg/ha/y and 0.18 Mg/ha/y. Suspended sediment sampling indicated greater amounts of sediment in Little Falls Run, which is most likely due to anthropogenic influences. Field analyses also suggest that all-terrain vehicle crossings represent the majority of sediment flux derived from forested areas of Horsepen Run. The combined RUSLE/SDR and field sampling data indicate that small-scale anthropogenic disturbances (ATV trails and construction sites) play a major role in overall sediment flux rates for both basins and that these sites must be properly accounted for when evaluating sediment flux rates at a sub-watershed scale.  相似文献   

16.
Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale.  相似文献   

17.
This collaborative study examined urbanization and impacts on area streams while using the best available sediment and erosion control (S&EC) practices in developing watersheds in Maryland, United States. During conversion of the agricultural and forested watersheds to urban land use, land surface topography was graded and vegetation was removed creating a high potential for sediment generation and release during storm events. The currently best available S&EC facilities were used during the development process to mitigate storm runoff water quality, quantity, and timing before entering area streams. Detailed Geographic Information System (GIS) maps were created to visualize changing land use and S&EC practices, five temporal collections of LiDAR (light detection and ranging) imagery were used to map the changing landscape topography, and streamflow, physical geomorphology, and habitat data were used to assess the ability of the S&EC facilities to protect receiving streams during development. Despite the use of the best available S&EC facilities, receiving streams experienced altered flow, geomorphology, and decreased biotic community health. These impacts on small streams during watershed development affect sediment and nutrient loads to larger downstream aquatic ecosystems such as the Chesapeake Bay.  相似文献   

18.
ABSTRACT: The three basins of Reelfoot Lake, which is located in northwestern Tennessee, were investigated using the Cs-137 tracer technique to determine rates of sediment deposition and to estimate the time before the basins will fill with sediment. Blue Basin, the largest of the three basins with 2922 ha, had an average annual sedimentation rate of 0.9 cm/yr from 1984 to 1984. The basin will become too shallow for most boating and recreational activities in about 200 years. Buck Basin, the central basin with 774 ha, had an average annual sedimentation rate of 1.1 cm/yr and will become too shallow for most recreational uses in about 100 years. Upper Blue Basin, the most upstream and smallest basin with 439 ha, had an average annual sedimentation rate of 1.7 cm/yr and will become too shallow for most recreational uses in about 60 years. Two important sources of sediment to Reelfoot Lake are erosion from a large number of soybean fields and channelization of many of the streams that flow into the lake. Changes in land management that would reduce erosion could increase the time the lake would remain usable for recreational activities.  相似文献   

19.
Accounting of carbon stocks in woody vegetation for greenhouse purposes requires definition of medium term trends with accurate error assessment. Tree and shrub cover was sampled through time at randomly located sites over a large area of central Queensland, Australia using aerial photography from 1945 to 1999. Calibration models developed from field data for the same land types as those represented within the study area allowed for the extrapolation of overstorey and understorey cover, basal area and biomass values and these were modelled as trends over the latter half of the 20th century. These structural attributes have declined over the region because of land clearing with values for biomass changing from a mean of 58.0(+/-1.2)t/ha in 1953 to 41.1(+/-1.0)t/ha in 1991. The biomass of Acacia on clay and Eucalypt on texture contrast soils land types has declined most dramatically. Within uncleared vegetation there was an overall trend of increase from 56.1(+/-1.2)t/ha in 1951 to 67.6(+/-1.3)t/ha in 1995. The increase in structural attributes within uncleared vegetation was most pronounced for the Eucalypt on texture contrast soils and Eucalypt on clay land types. It was demonstrated that the sites sampled were representative of their land types and that spatial bias of the photography, undetected tree-killing, sampling error, inherent variability of structural attributes and measurement error should not have impacted greatly on bias or precision of trend estimates for well-sampled land types. Certainly the errors are not likely to be substantial for trends averaged over all land types and they provide an accurate assessment of the magnitude and direction of change. The technique presented here would appear to be a robust means of accounting for the above-ground woody component of woodlands and open forests and will also contribute to a broader understanding of savanna dynamics.  相似文献   

20.
Abstract: Spatial distribution of land use can have a substantial effect on surface and groundwater quality. Our objective was to test for trends in flow components and water quality related to changes in land use in the Alafia and Hillsborough River watersheds in Florida, USA, over the period 1974‐2007. In addition, water quality statistics were evaluated in the perspective of numeric water quality criteria and proposed reclassification of segments of the Alafia River. Trends in 10 water quality parameters and three discharge variables were evaluated using a nonparametric trend detection test. Results of land use analysis indicated substantial urbanization and loss of agricultural land in the study area. Discharge variables did not exhibit significant trends, whereas trends in the majority of water quality concentrations were negative or nonsignificant with total nitrogen and total Kjeldahl nitrogen as exceptions showing positive trends. Changes in nutrient pathways could not be clearly identified. Considering recently promulgated numeric nutrient criteria and standards for dissolved fluoride, much of the Alafia River was found to be out of compliance. While there were land use changes and changes in water quality over the study period, it was difficult to identify a direct cause‐effect relationship. Responses to regulatory efforts, such as the Clean Water Act and improvements in phosphate mining practices, may have had greater impacts on water quality than changes in land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号