首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The Agricultural Production Systems sIMulator model validated in a prior study for winter wheat was used to simulate yield, aboveground crop biomass (BM), transpiration (T), and evapotranspiration under four irrigation capacities (ICs) (0, 1.7, 2.5, and 5 mm/day) with two nitrogen (N) application rates (N1, 94 kg N/ha; N2, 160 kg N/ha) to (1) understand the performance of winter wheat under different ICs and (2) develop crop water production function under various ICs and N rates. Evaluation was based on yield, aboveground crop BM, transpiration productivity (TP), crop water productivity (WP), and irrigation WP (IWP). Simulation results showed winter wheat yield increased with increase in N application rate and IC. However, the rate of yield increase gradually reduced with additional irrigation beyond 2.5 mm/day. A 5 mm/day IC required a total of 190 mm irrigation and produced a 5%–16% yield advantage over 2.5 mm/day. This indicates it is possible to reduce groundwater use for wheat by 50% incurring only 5%–16% yield loss relative to 5 mm/day. The TP and IWP for grain were slightly higher under IC of 1.7 mm/day (15.2–16.1 kg/ha/mm and 0.98–1.6 kg/m3) when compared to 5 mm/day (14.7–15.5 kg/ha/mm and 0.6–1.06 kg/m3), respectively. Since TP and IWPs are relatively higher under lower ICs, winter wheat could be a suitable crop under lower ICs in the region. Relationship between yield–T and yield–ET was linear with a slope of 15–16 and 9.5–10 kg/ha/mm, respectively. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

2.
ABSTRACT: A two-year study was conducted to assess the effect of hog manure on the losses of nitrogen and phosphorus in runoff and drainage from grain-corn (Zea mays L.) plots, and the importance of spring versus annual loads. Treatments consisted of mineral N-P-K fertilizer applied at rates of 152 kg N ha-1, 35 kg P ha-1, and 86 kg K ha-1; and hog (Sus scrofa domestica L.) manure applied preplant or post-emergence (six-to-eight leaf stage), at 152 kg N ha-1, 39 kg P ha-1, and 112 kg K ha-1. The plots were rototilled (7 cm depth) in spring to incorporate fertilizer and preplant hog manure, and fall chisel-plowed (15 cm depth) to incorporate chopped corn residues. They were arranged in a completely randomized plot design. Flow volumes and nutrient levels in runoff and drainage waters were monitored year round but occurred mainly during the snowmelt (March 25-April 9), and post.snowmelt (April 10-May 13) periods. Of the total amount of water lost during snowmelt, 90 percent was in runoff, while 92 percent occurred as drainage in the post-snowmelt period. Sixty-five percent of the total annual volume of water lost was lost during these two periods as runoff and drainage. Treatments did not affect the annual snowmelt or post-snowmelt N and P loads. Total annual loads averaged 8.0 kg TKN ha-1, 1.8 kg NH4-N ha-1, 43 kg NO3-N ha-1, 0.4 kg TP ha-1, and 0.15 kg PO4-P ha-1. Spring (snowmelt and ost-snowmelt) runoff and drainage loads averaged 2.9 kg TKN ha-1, 1.2 kg NH4-N ha-1, 18 kg NO3-N ha-1, 0.25 kg TP ha-1, and 0.04 kg PO4-P ha-1, which were 40 percent to 70 percent of the yearly nutrient loads. Therefore, the hog manure management systems examined were of no greater threat to the environment than mineral fertilizers. However, spring N and P losses do represent an important part of the annual nutrient loss budget, even with conservation practices.  相似文献   

3.
Banana pseudostem biomass, traditionally incinerated and wasted, has been conserved and recycled by solid state fermentation (SSF) into plant growth stimulating soil conditioner (SC). This SC alone or combined with biofertilizers showed reduced mortality (10 and 12%) of planted suckers, enhanced chlorophyll contents (593 and 661 μg g−1), gave biomass (35.0 and 36.6 kg) at par and improved yield (54.2 and 55.0 MT ha−1), with that of the control (23%, 312 μg g−1, 36.3 kg and 49.4 MT ha−1, respectively). This has afforded (i) saving of chemical fertilizers by 50%, (ii) reduction in quantum (40%) and frequency (15%) of irrigation and (iii) reduction in cost of electricity and labor without sacrificing quality and quantity of banana. Thus, a voluminous agro-waste is converted into an eco-friendly agro-input for sustainable productivity.  相似文献   

4.
ABSTRACT: Hydrologic responses to logging with skidders and responses to logging with a cable yarder are compared. After a 23-year calibration with an undisturbed control catchment, mixed stands of shortleaf pine (Pinus echinata Mill.) and hardwoods were clearfelled on two small catchments in the hilly Coastal Plain of north Mississippi and observed for five years. Runoff increased 370 mm (skidded) and 116 mm (yarded) during the first year with 1876 mm of rainfall, and 234 mm (skidded) and 228 mm (yarded) during the second year when 1388 mm of precipitation equaled the calibration mean. Sediment concentrations for the yarded catchment during the first two years averaged 641 and 1,629 mg L?1, respectively, and yields were 6,502 and 12,086 kg ha?1. Compared to calibration means of 74 mg L?1 and 142 kg ha?1, these extreme values can be attributed largely to transport of sediment stored in the channel and to erosion of subsurface flow paths, which was exacerbated by high flow volumes. During the first year, the concentration (231 mg L?1) and yield (2,827 kg ha?1) for the control catchment also exceeded the calibration means. However, concentrations (134 mg L?1) and yields (1,806 kg ha?1) for the skidded catchment were about 40 percent lower than for the control catchment during the first year, and were higher than those for the control only during the second year. Because deep percolation was limited and because rainfall was unusually high, increases in flows and sediment concentrations and yields probably approximate maximum responses to clearcut harvesting in the uplands of the southern Coastal Plain.  相似文献   

5.
Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha−1 year−1 and 0.04 Mg N ha−1 year−1 following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2–0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25–0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal land with coarse-texture soils can significantly increase SOC and N stocks, and improve soil structure.  相似文献   

6.
The sulphur dioxide and nitrogen oxides emissions from all sources in Alberta, Canada, during 1982 amounted to 488,297 and 353,511 tonnes, respectively. During this year deposition of wet sulphate from all stations in the province, 8 kg ha–1 yr–1, compares well with the five-year average (1978–1982) value of 10 kg ha–1 yr–1. These measurements are about one-half of the wet sulphate deposition criteria of 20 kg ha–1 yr–1 established for protecting the moderately sensitive aquatic ecosystem in eastern Canada. Due to dry, cold, continental climate conditions of Alberta, dry sulphate or sulphur deposition is equally or more important than wet deposition. No effects of the long-range transport of atmospheric pollutants (LRTAP) on the ecosystems in Alberta have been observed to date. Atmospheric deposition target loadings of SO4 –2, NO3 , and H+ for Alberta and western Canadian environmental conditions should be developed to protect the highly sensitive ecosystems. Some future research and monitoring priorities for Alberta and western Canada are outlined.  相似文献   

7.
ABSTRACT: Few water budgets exist for specific types of wetlands such as peatlands, even though such information provides the basis from which to investigate linkages between wetlands and upland ecosystems. In this study, we first determined the water budget and then estimated nutrient loading from an upland farm field into a 1.5 ha, kettle-block peatland. The wetland contains highly anisotropic peat and has no distinct, active layer of groundwater flow. We estimated the depth of the active layer using Fick's law of diffusion and quantified groundwater flow using a chemical mass balance model. Evapotranspiration was determined using MORECS, a semi-physical model based on the Penman-Monteith approach. Precipitation and surface outflow were measured using physical means. Groundwater provided the major inflow, 84 percent (44,418 m3) in 1993 and 88 percent (68,311 m3) in 1994. Surface outflow represented 54 percent (28,763 m3) of total outflows in 1993 and 48 percent (37,078 m3) in 1994. A comparison of several published water budgets for wetlands and lakes showed that error estimates for hydrologic components in this study are well within the range of error estimates calculated in other studies. Groundwater inflow estimates and nutrient concentrations of three springs were used to estimate agricultural nutrient loading to the site. During the study period, nutrient loading into the peatland via groundwater discharge averaged 24.74 kg K ha-1, 1.83 kg total inorganic P had, and 21.81 kg NO3-N ha-1.  相似文献   

8.
ABSTRACT: We measured annual discharges of water, sediments, and nutrients from 10 watersheds with differing proportions of agricultural lands in the Piedmont physiographic province of the Chesapeake Bay drainage. Flow-weighted mean concentrations of total N, nitrate, and dissolved silicate in watershed discharges were correlated with the proportion of cropland in the watershed. In contrast, concentrations of P species did not correlate with cropland. Organic P and C correlated with the concentration of suspended particles, which differed among watersheds. Thus, the ratio of N:P:Si in discharges differed greatly among watersheds, potentially affecting N, P or Si limitation of phytoplankton growth in the receiving waters. Simple regression models of N discharge versus the percentage of cropland suggest that croplands discharge 29–42 kg N ha-1 yr-1 and other lands discharge 1.2–5.8 kg N ha-1 yr-1. We estimated net anthropogenic input of N to croplands and other lands using county level data on agriculture and N deposition from the atmosphere. For most of the study watersheds, N discharge amounted to less than half of the net anthropogenic N.  相似文献   

9.
Abstract: Relationships between discharge, land use, and nitrogen sources and sinks were developed using 5 years of synoptic sampling along a 300 km reach of the Rio Grande in central New Mexico. Average river discharge was higher during 2001 and 2005 “wet years” (15 m3/s) than during the drought years of 2002‐04 “dry years” (8.9 m3/s), but there were no differences in nitrogen loading from wastewater treatment plants (WWTPs) which were the largest and most consistent source of nitrogen to the river (1,330 kg/day). Average total dissolved nitrogen (TDN) concentrations remained elevated for 180 km downstream of the Albuquerque WWTP averaging 1.2 mg/l in wet years and 0.52 mg/l in dry years. Possible explanations for the constant elevated TDN concentrations downstream of the major point source include reduced nitrogen retention capacity, minimal contact with riparian or channel vegetation, large suspended sediment loads, and low algal biomass. Somewhat surprisingly, agricultural return flows had lower average nitrogen concentrations than river water originally diverted to agriculture in both wet (0.81 mg/l) and dry years (0.19 mg/l), indicating that the agricultural system is a sink for nitrogen. Lower average nitrogen concentrations in the river during the dry years can be explained by the input of agricultural returns which comprise the majority of river flow in dry years.  相似文献   

10.
Proper grazing management practices can generate corresponding compensatory effects on plant community production, which may reduce inter-annual variability of productivity in some grassland ecosystems. However, it remains unclear how grazing influences plant community attributes and the variability of standing crop. We examined the effects of sheep grazing at four stocking rate treatments [control, 0 sheep ha?1 month?1; light (LG), 0.15 sheep ha?1 month?1; moderate (MG), 0.30 sheep ha?1 month?1; and heavy (HG), 0.45 sheep ha?1 month?1] on standing crop at the community level and partitioned by species and functional groups, in the desert steppe of Inner Mongolia, China. The treatments were arranged in a completely randomized block design over a 9-year period. Standing crop was measured every August from 2004 to 2012. Peak standing crop decreased (P < 0.05) with increasing stocking rate; peak standing crop in the HG treatment decreased 40 % compared to the control. May–July precipitation explained at least 76 % of the variation in peak standing crop. MG and HG treatments resulted in a decrease (P < 0.05) in shrubs, semi-shrubs, and perennials forbs, and an increase (P < 0.05) in perennial bunchgrasses compared to the control. The coefficients of variation at plant functional group and species level in the LG and MG treatments were lower (P < 0.05) than in the control and HG treatments. Peak standing crop variability of the control and HG community were greatest, which suggested that LG and MG have greater ecosystem stability.  相似文献   

11.
The objective of this research was to evaluate the impacts of increasing product removal on biomass and nutrient content of a central hardwood forest ecosystem. Commercial thinning, currently the most common harvesting practice in southern New England, was compared with whole-tree clearcutting or maximum aboveground utilization. Using a paired-watershed approach, we studied three adjacent, first-order streams in Connecticut. During the winter of 1981–82, one was whole-tree clearcut, one was commercially thinned, and one was designated as the untreated reference. Before treatment, living and dead biomass and soil on the whole-tree clearcut site contained 578 Mg ha–1 organic matter, 5 Mg ha–1 nitrogen, 1 Mg ha–1 phosphorus, 5 Mg ha–1 potassium, 4 Mg ha–1 calcium, and 13 Mg ha–1 magnesium. An estimated 158 Mg ha–1 (27% of total organic matter) were removed during the whole-tree harvest. Calcium appeared to be the nutrient most susceptible to depletion with 13% of total site Ca removed in whole-tree clearcut products. In contrast, only 4% (16 Mg ha–1) of the total organic matter and 2% of the total nutrients were removed from the thinned site. Partial cuts appear to be a reliable management option, in general, for minimizing nutrient depletion and maximizing long-term productivity of central hardwood sites. Additional data are needed to evaluate the long-term impacts of more intensive harvests.  相似文献   

12.
ABSTRACT: Sulfometuron methyl [methyl 2-[[[[4,6-dimethly 2-(pyrimidinyl) a-mino] carbony l]amino] sulfonyl] benzoate] was applied by a ground sprayer at a maximum labeled rate of 0.42 kg ha-1 a.i. to a 4 ha Coastal Plain flatwoods watershed as site preparation for tree planting. Herbicide residues were detected in Streamflow for only seven days after treatment and did not exceed 7 mg m-3. Sulfometuron methyl was not detected in any stormflow and was not found in any sediment (both bedload and suspended). Sampling of a shallow ground water aquifer, > 1.5 m below ground surface, did not detect any sulfometuron methyl residues for 203 days after herbicide application. Lack of herbicide residue movement was attributed to low application rates, rapid hydrolysis in acidic soils and water and dilution in streamflow.  相似文献   

13.
In a Mediterranean climate where much of the precipitation falls during winter, snowpacks serve as the primary source of dry season runoff. Increased warming has led to significant changes in hydrology of the western United States. An important question in this context is how to best manage forested catchments for water and other ecosystem services? Answering this basic question requires detailed understanding of hydrologic functioning of these catchments. Here, we depict the differences in hydrologic response of 10 catchments. Size of the study catchments ranges from 50 to 475 ha, and they span between 1,782 and 2,373 m elevation in the rain‐snow transitional zone. Mean annual streamflow ranged from 281 to 408 mm in the low elevation Providence and 436 to 656 mm in the high elevation Bull catchments, resulting in a 49 mm streamflow increase per 100 m (R2 = 0.79) elevation gain, despite similar precipitation across the 10 catchments. Although high elevation Bull catchments received significantly more precipitation as snow and thus experienced a delayed melt, this increase in streamflow with elevation was mainly due to a reduction in evapotranspiration (ET) with elevation (45 mm/100 m, R2 = 0.65). The reduction in ET was attributed to decline in vegetation density, growing season, and atmospheric demand with increasing elevation. These findings suggest changes in streamflow in response to climate warming may likely depend on how vegetation responds to those changes in climate.  相似文献   

14.
Soil analyses were conducted on home lawns across diverse ecoregions of the U.S. to determine the soil organic carbon (SOC) sink capacity of turfgrass soils. Establishment of lawns sequestered SOC over time. Due to variations in ecoregions, sequestration rates varied among sites from 0.9 Mg carbon (C) ha?1 year?1 to 5.4 Mg C ha?1 year?1. Potential SOC sink capacity also varied among sites ranging from 20.8 ± 1.0–96.3 ± 6.0 Mg C ha?1. Average sequestration rate and sink capacity for all sites sampled were 2.8 ± 0.3 Mg C ha?1 year?1 and 45.8 ± 3.5 Mg C ha?1, respectively. Additionally, the hidden carbon costs (HCC) due to lawn mowing (189.7 kg Ce (carbon equivalent) ha?1 year?1) and fertilizer use (63.6 kg Ce ha?1 year?1) for all sites totaled 254.3 kg Ce ha?1 year?1. Considering home lawn SOC sink capacity and HCC, mean home lawn sequestration was completely negated 184 years post establishment. The potential SOC sink capacity of home lawns in the U.S. was estimated at 496.3 Tg C, with HCC of between 2,504.1 Gg Ce year?1 under low management regimes and 7551.4 Gg Ce year?1 under high management. This leads to a carbon-positive system for between 66 and 199 years in U.S. home lawns. More efficient and reduction of C-intensive maintenance practices could increase the overall sequestration longevity of home lawns and improve their climate change mitigation potential.  相似文献   

15.
The Alqueva reservoir created the largest artificial lake of Western Europe in 2010. Since then, the region has faced challenges due to land-use changes that may increase the risk of erosion and shorten the lifetime of the reservoir, increasing the need to promote land management sustainability. This paper investigates the aspect of seasonality of soil erosion using a comprehensive methodology that integrates the Revised Universal Soil Loss Equation (RUSLE) approach, geographic information systems, geostatistics, and remote-sensing. An experimental agro-silvo pastoral area (typical land-use) was used for the RUSLE factors update. The study confirmed the effect of seasonality on soil erosion rates under Mediterranean conditions. The highest rainfall erosivity values occurred during the autumn season (433.6 MJ mm ha?1 h?1), when vegetation cover is reduced after the long dry season. As a result, the autumn season showed the highest predicted erosion (9.9 t ha?1), contributing 65 % of the total annual erosion. The predicted soil erosion for winter was low (1.1 t ha?1) despite the high rainfall erosivity during that season (196.6 MJ mm ha?1 h?1). The predicted annual soil loss was 15.1 t ha?1, and the sediment amount delivery was 4,314 × 103 kg. Knowledge of seasonal variation would be essential to outline sustainable land management practices. This model will be integrated with World Overview of Conservation Approaches and Technologies methods to support decision-making in that watershed, and it will involve collaboration with both local people and governmental institutions.  相似文献   

16.
This study assesses the factors affecting the adoption of laser land leveling (LLL) and its impact on crop yields and net returns. It uses household survey data collected from 621 randomly selected farmers in Karnal District of Haryana, India, and applies endogenous switching regression models. Unbiased model results show that the adoption of LLL has significant positive impacts on yields (rice +549 kg ha−1; wheat +471 kg ha−1) and net returns (an aggregate increase of US$230/ha) in the rice-wheat production system, thereby raising farmers' income substantially. Our results show that LLL adoption at the farm level is influenced by land size and quality, tenure system, availability of farm machinery (tractor), access to finance and farm cooperatives, gender of household head, level of education and training and access to extension services. Therefore, LLL scaling strategies need to consider these bio-physical and socio-economic parameters to reach adoption at scale and generate large social, economic, and environmental benefits.  相似文献   

17.
The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from $590 to $865 ha?1 year?1 ($240–$350 ac?1 year?1). Expressed in the context of “treatment area” (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as $59 to about $87 per treated hectare ($24–$35 ac?1). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between $7.79 and $11.46 mg?1, phosphorus retained costs between $6.97 and $10.25 kg?1, and nitrogen retained costs between $1.59 and $2.34 kg?1. Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.  相似文献   

18.
Currently, there is no agreed upon method for estimating evapotranspiration (ET) across large regions such as the state of New Mexico. Remote sensing methods have potential for providing a solution, but require validation. A comparison between field‐scale ET measurements using a portable chamber ET measurement device and modeled ET using the remote sensing Regional Evapotranspiration Estimation Model (REEM) was performed where the model had not been previously evaluated. Data were collected during the growing season of 2015 in three irrigated agricultural valleys of northern New Mexico in agricultural and nonagricultural settings. No statistically significant difference was observed in agricultural datasets between means of measured (= 3.7 mm/day, SE = 0.31 mm/day) and modeled (= 4.0 mm/day, SE = 0.01 mm/day) daily ET; t(17) = ?1.50, = 0.15, α = 0.05. As there was no statistical difference observed between agricultural datasets, results support the use of REEM in irrigated agricultural areas of northern New Mexico. A statistically significant difference was observed in nonagricultural datasets between means of measured (= 1.7 mm/day, SE = 0.22 mm/day) and modeled (= 0.0 mm/day, SE = 0.00 mm/day) daily ET; t(9) = 1.79, = 5.7 × 10?6, α = 0.05. With additional calibrations and air temperature sensors placed outside of agricultural areas, REEM may be suitable for use in nonagricultural areas of northern New Mexico.  相似文献   

19.
ABSTRACT: Detailed measurements of soil moisture and ET in semiarid forest environments have not been widely reported in the literature. In this study, soil moisture and water balance components were measured over a four‐year period on a semiarid ponderosa pine hillslope, with evapotranspiration (ET) determined as the residual of measured precipitation, runoff, and change in soil moisture storage. ET accounts for approximately 95 percent of the water budget and has a distinctly bimodal annual pattern, with peaks occurring after spring snowmelt and during the late summer monsoon season, periods that coincide with high soil moisture. Weekly growing season ET rates determined by the hillslope water balance are found to be invariably below calculated potential rates. Normalized ET rates are linearly correlated (r2= 0.62) with soil moisture; therefore, a simple linear relation is proposed. Growing season soil moisture dynamics were modeled based on this relation. Results are in fair agreement (r2= 0.63) with the observed soil moisture data over the four growing seasons; however, for two dry summers with little surface runoff, much better results (r2 > 0.90) were obtained.  相似文献   

20.
Studies have been made of the growth characteristics of water hyacinth, Eichhornia crassipes (Mart.) Solms, and its ability to remove N, P and K, in a secondary settling pond of a small secondary sewage treatment plant serving both the academic and residential blocks of the Swire Marine Laboratory, University of Hong Kong. The treatment plant consists of, in series, a primary settling tank, a trickling filter compartment and a secondary settling pond from which part of the treated wastewater is recycled to the primary settling tank while the remaining effluent (1 to 2 m3 daily) mixes with and hence is diluted by the outflowing seawater from the aquarium system of the Swire Marine Laboratory before discharge to the sea. Samples of wastewater have been taken regularly from the primary sedimentation pond, the outflow of the trickling filter, the secondary settling pond and the effluent of the treatment plant (before mixing with aquarium outflow) since January, 1992. Physical, chemical and biological characteristics of the samples have been determined and are typical of secondary effluents, with a mean pH of about 7.5, total solids 1200 mg L−1, suspended solids 45 mg L−1, conductivity 2000 μS cm−1, salinity 1 ppt, dissolved oxygen 2 mg L−1, BOD5 45 mg L−1, Kjeldahl-N 30 mg L−1, NH4,-N 25 mg L−1, NO3-N 4 mg L−1, total P 10 mg L−1, K 35 mg L−1 and total coliforms of less than 105 colonies 100 ml−1.Water hyacinth plants have been stocked in the secondary settling pond as an integral part of the treatment plant so as to improve the quality of, as well as to retrieving and recycling nutrient elements from, the wastewater. The plants are periodically harvested to maintain an active growing crop. The growth rate, standing crop biomass, tissue nutrient composition, nutrient storage and accumulation rate of two growth cycles, one from February 25 to March 18 (mean temperature 17.6°C) and the other from 22 April to 12 May (24.8°C) are reported. The water hyacinth assumed a relatively high standing crop biomass of 10 kg m−2 (5 to 6 t DM ha−1), and growth rates of 48 and 225 g m−2 day−1, respectively, for the first and second growth period. Nutrient storage capacities were relatively high, at about 20, 7.5 and 16.5 g m−2 for N, P and K, respectively. The nutrient composition was very high, reaching 5.42% for N, 1.97 for P, and 4.57 for K. Both the stem and lamina accumulated high levels of N, while the petiole had the highest level of P and K. Apart from nutrient removal, the water hyacinth also helped to decrease the suspended solids, BOD5 value and total coliforms of the wastewater.It is concluded that water hyacinth improves the quality of wastewater in such small-scale sewage treatment plants and it is recommended that frequent harvests of water hyacinth would increase the treatment efficiency, especially during the active growing season with high temperatures coupled with intense solar radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号