首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Delineation of a welihead protection area (WHPA) is the key element in welihead protection programs for drinking water supplies. WHPAs are often delineated under idealized conditions using simple steady-state assumptions, which lead to an incorrect estimation of area and geometry. In this paper, we compare the results from a simple steady-state procedure commonly employed in WHPA delineation with a more complex transient approach that allows consideration of seasonal variation in pumping rates. We also introduce a transient procedure to delineate time-related capture zones using a numerical ground water flow and transport model. Welihead delineation is examined for two municipal wells in Tipton, Oklahoma, using a ten-year time-of-travel criterion. In the steady-state procedure, where we assumed constant pumping rates, we used GPTRAC, a semi-analytical model, and MOC, a numerical model. The capture zone delineated by GPTRAC is comparable in shape with the capture zone delineated by MOC but not in size due to the differences in solution schemes. In the transient procedure, we used MOC and considered the seasonal variation in pumping rates. The capture zones delineated in this procedure were larger than the capture zones delineated by the steady-state procedure using the same model. Further analysis showed that a higher drawdown was predicted in the transient procedure than in the steady-state procedure, which is the reason for larger capture zones.  相似文献   

2.
河流水质模型在双流县流域治理中的应用   总被引:1,自引:0,他引:1  
研究利用现有的河流水质模型,构建了一个可实时模拟河流水环境质量变化状况的动态模型。模型采用一维稳态单组分水质模型对河流的CODCr、NH3-N的降解进行计算,采用多宾斯-坎普稳态模型对河流的BOD、DO变化情况进行计算。模型引入水文数据、水质监测数据、环境统计数据、社会统计公报数据,以Excel作为数据平台,可以反演出河流不同月份、不同区段的污染物降解系数。研究将该模型应用于双流县的流域治理,以在锦江双流段的应用为例进行了具体说明。根据2008年双流县河流的相关数据,研究使用该模型反演出了锦江双流段的污染物降解系数,并对其反映的流域污染状况进行了分析。随后,研究使用该模型已计算出的岷江中段河流的降解系数,模拟计算了4种情景下锦江双流段出境断面的可能水质变化,以验证拟定的双流县流域治理方案的预期效果。模型具有实用性和进一步扩展的功能。  相似文献   

3.
The Sandhills region represents a tremendous water resource for the State of Nebraska. Small shallow lakes, marshes, and subirrigated meadows are abundant due to interactions between ground water and surface water. One theory relating ground water to lake-flow systems in the Sandhills has been termed the “flow-through” concept. Thermal-infrared remotely acquired images document the flow-through model for a test site in Western Nebraska.  相似文献   

4.
ABSTRACT: This paper describes the verification of the QUAL-1 mass transport model for the lower Mississippi River between St. Francisville and Point a la Hache using dye studies conducted by the U. S. Geological Survey. QUAL-1 is a one-dimensional steady-state model for rivers and is capable of predicting longitudinal profiles of soluble materials entering rivers from point sources. Both conservative and nonconservative parameters of water quality can be considered. The major problems surmounted were the determination of a diffusion coefficient and the use of transient data to verify a steady state model.  相似文献   

5.
ABSTRACT A mathematical model was developed to solve a steady free surface flow problem and a rapid drawdown problem in a two-dimensional porous medium. The same problem was also solved by an analogue device and excellent agreement was found to exist between the two solutions. This paper contains the formulation of the numerical problem from first principles and a discussion of measures that had to be taken in order to assure numerical stability and proper convergence of the solution. Although the scope of this study was limited to a two-dimensional flow case, the elements of simulation discussed are general in nature and applicable to three-dimensional problems. It was demonstrated that numerical solution can be obtained for the position of the free surface at given time intervals, for the piezometric head distribution within the flow field and for flow quantities across given boundaries. In addition, the mathematical model will permit consideration of nonhomogeneous or anisotropic characteristics of the porous medium, without difficulty. It is concluded that mathematical models, incorporating some or all of the techniques discussed in this paper, in conjunction with some analogue control device, can be very efficient and reliable tools for solving complex porous flow problems, including those which, so far, have eluded comprehensive analysis, due to physical and/or cost limitation.  相似文献   

6.
ABSTRACT: Most of the precipitation that falls is unused because it never reaches a stream or recharges an underground supply. This storm water evaporates and is transpired and consumed by plants. Described below are pertinent legal principles and the concept for a small-scale system to capture and store some of this “lost” storm water from the subflow of small gravelly washes that are not part of or connected with a stream system. The subsurface flow is interrupted by an elastomer faced earthen barrier (dam) and stored in a gravel bed. Both the barrier and the gravel storage bed are situated below the surface of the wash bed. If the gravel bed is not underlain by a natural substratum that is relatively impervious, it is either placed on a liner of suitable compacted clay or is underlain with an elastomeric membrane to limit the downward infiltration and loss of the stored water. A system may be used to capture and store sub-flow after surface flow has ceased and during periods of drought; to supply household and irrigation water; to exercise Winters Doctrine rights; and to replace small dams and surface impoundments by underground storage of the captured water to ensure a more reliable and sanitary supply for livestock and wildlife. A system is most effective in desert regions where (or when) both stream and ground water are unavailable; where rainfall is infrequent, but in storms resulting in rapid runoff; and where land surface topography and morphology coincide to form sites that permit the productive use of a system. A system should not be installed without sound legal and hydrological advice. Careful engineering is essential to the safe and proper design of a system, especially its subsurface barrier.  相似文献   

7.
Abstract: Ground‐water flow paths constrain the extent of nitrogen (N) sinks in deep, stratified soils of riparian wetlands. We examined ground‐water flow paths at four forested riparian wetlands in deep, low gradient, stratified deposits subjected to Southern New England’s temperate, humid climate. Mid‐day piezometric heads were recorded during the high water table period in April/May and again in late November at one site. Coupling field data with a two‐dimensional steady‐state ground‐water flow model, flow paths and fluxes were derived to 3 m depths. April/May evapotranspiration (ET) dominated total outflux (44‐100%) while flux to the stream was <10% of total outflux. ET exerted upward ground‐water flux through shallow carbon‐rich soils, increasing opportunities for N transformations and diverting flow from the stream. Dormant season results showed a marked increase in flux to the stream (27% of the total flux). Riparian sites with deep water tables (naturally or because of increased urbanization or other hydrologic modifications) or shallow root zones may not generate ground‐water upwelling to meet evaporative demand, thereby increasing the risk of N movement to streams. As water managers balance issues of water quality with water quantity, they will be faced with decisions regarding riparian management. Further work towards refining our understanding of ET mediation of N and water flux at the catchment scale will serve to inform these decisions.  相似文献   

8.
ABSTRACT: The equations of transient and steady-state flow in two-dimensional artesian aquifers are approximated using finite differences. The resulting linear difference equations, combined with other linear physical and management constraints and a linear objective function, comprise a linear programming (LP) formulation. Solutions of such LP models are used to determine optimal well distributions and pumping rates to meet given management objectives for a hypothetical transient problem and for a steady-state field problem.  相似文献   

9.
ABSTRACT: The application of a water balance model in finding “solutions” to the supply/demand problem was demonstrated using the South Platte River basin as a case study. Solutions were ascertained by hand, using both “average” and “stress” supply/demand conditions, and were developed for 1980, 2000, and 2020; nonquantifiable boundary conditions were incorporated by judgement. The solution obtained for a particular set of conditions is not unique and has strong normative characteristics; thus it must be judged by various interest groups having different ethical positions. The water balance model has a tabular display format and so the “model” is merely a simple table, i.e., a “water balance table.” In this work the water balance table was displayed on an eight-foot by eight-foot color-coded magnetic board. The board provides a means to both find and display the needed supply/demand “solution.” The tabular display facilitates understanding of the systemwide solution and the formulation of value judgments. Based upon these value judgments and an initial “straw man” solution, successive negotiated solutions can be found which can minimize “conflict.”  相似文献   

10.
ABSTRACT The term “institution” and several variants are used frequently in the literature on metropolitan water management. The state-of-the art investigation on which this paper is based revealed that 1) many uses of the term do not include careful definitions; 2) many users of the term seemed unaware of the general, theoretical literature on the subject of institutions; 3) there was little consistency among uses, either in the practical literature dealing with water or in the conceptual literature dealing with theories of institutions or institutionalization; 4) some usages were without significant meaning; 5) in many cases the term was used as a kind of “black box” to account for behavioral, societal, or managerial factors; 6) the term was often used as a synonym for “organization”. This latter use is frequently found in federal reports, including National Water Commission studies, and is most unfortunate because it tends to slight significant social-psychological factors. A suggested definition is: “An institution is the structured result or outcome of a process by which values are articulated, arranged, and communicated, having continuity over time, and influencing behavior of persons who did not necessarily participate in formulating those values (norms).”  相似文献   

11.
ABSTRACT: Contamination of ground water supplies with volatile organic compounds is a new and significant problem. Municipalities and their community water systems are often the first to discover ground water contamination because of the monitoring programs they are required to carry out. When contamination exceeds standards, some action is required. The responses of Wisconsin municipalities to volatile organic compounds that exceed standards in their ground water sources is described. Actions to protect human health are prompt, but the survey results indicate plumes of contaminated ground water are usually not treated. They may continue to migrate and contaminate other private and public wells.  相似文献   

12.
ABSTRACT: Santa Fe Country, New Mexico, has adopted a land-use policy in which zoning densities provide a balance between the water use on a parcel of land and the water supply available bencath that land. In two of four mapped hydrologic zones, ground water in storage will be allowed to be mined to exhaustion in 100 years (40 years in urban areas). Elsewhere, the policy is for a steady state with use balanced by recharge. Equations to determine storage or recharge can be solved using site specific data or regional estimates of hydrologic conditions. Substantial reductions in the lot size requirements are allowed if water conservation convenants are adopted. Public acceptance indicates that the policy successfully integrates technical and political concerns. It is simple to administer, yet reflects widely expressed public goals and values.  相似文献   

13.
ABSTRACT: The South Fork of Long Island, New York is an area which relies entirely on ground water for water supply. Most of the water which is pumped is artifically recharged, without treatment, via cesspools. The natural quality of the ground water is very high. Some areas show increasing nitrate in the ground water. This comes from both cesspools and agricultural fertilizer. Saline water intrusion is a potential problem in coastal areas. High ammonia in surface ponds may result in eutrophication.  相似文献   

14.
McMahon, Tyler G. and Mark Griffin Smith, 2012. The Arkansas Valley “Super Ditch”— An Analysis of Potential Economic Impacts. Journal of the American Water Resources Association (JAWRA) 00(0):000‐000. 1‐12. DOI: 10.1111/jawr.12005 Abstract: In Colorado’s Arkansas River basin, urban growth and harsh farming conditions have resulted in water transfers from agricultural to urban uses. Several studies have shown that these transfers have significant secondary economic impacts associated with the removal of irrigated land from production. In response, new methods of sharing water are being developed to allow water transfers that benefit both farm and urban economies, compared with previous permanent transfers that negatively impacted surrounding farm communities. One such project currently under development is the Arkansas Valley “Super Ditch,” which is a rotational crop fallowing plan based on long‐term water leasing designed to provide an annual supply of 25,000 acre‐feet of water (31.6 Mm3). This article analyzes the net benefits of implementing the “Super Ditch” for both the farmers and the surrounding community.  相似文献   

15.
Abstract: Water industry experts have been arguing that the traditional techniques are not an accurate means of measuring water contamination. This is mainly because these techniques emphasize neither the stochastic nature of the water contamination process nor the precision and the accuracy of the tested methods used by environmental laboratories. In this work, we describe the development and application of prototype Dynamic Bayesian Networks (DBNs) that model ground‐water quality to determine the impact of chemical contaminants on ground‐water quality in the Salalah area, which is allocated to the south of Oman. We also present a new technique for data pre‐processing because it is needed for the treatment of ground‐water datasets that are used as the data source to learn the probabilities for dynamic decision models. Among more than 20 wells in area, only four wells were selected to be analyzed and the results show that we achieved an acceptable level of efficiency.  相似文献   

16.
ABSTRACT: Local governments often face environmental problems that cross political boundaries. The onus for solution usually falls on the moat severely affected jurisdiction, others do nothing until impacted. Resolution of these problems requires cooperation across political boundaries which means that local governments must be persuaded first that there is a problem, and second that action is required to solve it. This paper presents a method to supply low cost, credible information that can be used to achieve consensus on problem solution. A case study of a lake water quality management problem is described. Formative evaluation techniques was adapted to provide a minimum of evidence which was then used to persuade less impacted local jurisdictions to cooperate in the problem solution.  相似文献   

17.
ABSTRACT: One of the most common methods of artificial recharge to the ground water is from basins. In this paper, seven analytical solutions that describe artificial recharge from basins are presented. Most of these solutions are derived by directly solving the general partial differential equation for ground water flow. The solutions differ in that they use different boundary conditions, basin shapes, and consider the nonlinearity of the artificial recharge problem differently. Use of each analytical solution is demonstrated in this paper by application to an example problem. A comparison of each analytical solution presented in this paper was made to give suggestions on their use, their ease of implementation, and their relative agreement. Although no attempt is made in the paper to conclude which analytical solution is best for all problems, some general conclusions can be stated on the applicability of the various analytical solutions. Of the analytical solutions presented in this paper, Glovers and Hantush's solutions for rectangular recharge basins are highly recommended. Baumanns solution for a circular basin also gave fairly reliable results and is very easy to evaluate numerically.  相似文献   

18.
ABSTRACT: One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady‐state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature.  相似文献   

19.
Regulating water quantity and quality in irrigated agriculture   总被引:1,自引:0,他引:1  
This paper largely applies the theoretical model formulated in an earlier paper by the authors, of an input based approach to control an agricultural non-point-source pollution. The empirical problem includes a groundwater aquifer being polluted by several agricultural producers. In order to prevent degradation of the quality and depletion of the quantity of the water in the aquifer, a regulatory agency must intervene. The regulatory agency does not have all the information needed for decision making. The producers» use of water from a surface supply is recorded and additional water is pumped from the ground aquifer, the amount of which is unknown to the agency. The agency also does not know the physical characteristics of the production process that is factored into the pollution process. The model evaluates two monitoring regimes (central and individual) and two regulatory tools (taxes and quotas) associated with each regime. Individual monitoring was found to be superior to central monitoring, both in terms of the physical characteristics of the problem (water quality and quantity) and in terms of regional income. For both the central and the individual monitoring regimes, the optimal paths of the state variables reach steady-state values relatively early, with values in the individual monitoring reaching the steady-state earlier than in the case of central monitoring. The optimal path of investment in monitoring equipment suggested investment in monitoring equipment as early as possible.1998 Academic Press  相似文献   

20.
Abstract: The effectiveness of measuring lawn sprinkler application rates using the catch‐can test was evaluated. A survey of sources recommending the catch‐can test for measuring application rates show that catch‐can test procedures differ in the collector type, collector placement, number of collectors, and test duration. Analyses of catch‐can tests were performed to address these procedural differences, with emphasis on the type and number of collectors required to provide a reasonable level of confidence in test results. The accuracy of the catch‐can test generally improves as the number of randomly placed collectors increases. In order to achieve an accuracy of ±25% for 90 out of 100 catch‐can tests, the number of randomly placed collectors required ranged from 6 to over 50 for hand‐move systems, while for in‐ground systems, the number of randomly placed collectors required ranged from 2 to 8, depending on the pressure and percent overlap of the water distribution pattern. As long as a reasonable number of collectors were used when performing a catch‐can test, no consistent differences were observed in catch‐can test results due to type of collectors when using tuna fish cans, soup cans, or coffee mugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号