首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suspended sediment data from a 154 ha watershed on northeast Chichagof Island, Alaska, were collected over three fall storm seasons from 1980 to 1982. Sediment rating curves for nine pooled storms explained less than 34 percent of the variation in total suspended solids (TSS). Significantly higher concentrations of suspended sediment occurred during the rising limb of storm hydrographs than for similar flows on the falling limb, accounting for hysteresis loops in TSS versus streamflow plots for individual storms. These hysteresis loops were wider during early season storms, indicating that easily transportable fine sediment may have been flushed from the upper portion of channel banks and from behind large organic debris during early season peak flows. Regression relationships (TSS versus Q) developed for the highest stormflows (> 1 m3/s) had steeper slopes than the lower stormflows (< 1 m3/s). Turbidity correlated well (r=0.94) with TSS for all storm-flow data combined. Organic matter constituted an average of 35 percent (by weight) of TSS for all water quality samples.  相似文献   

2.
This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by individual clasts or wood materials in the channel. Such channels are headwater channels in close proximity to sediment sources, so they reflect a mix of hillslope and channel processes. Sediment inputs are derived directly from adjacent hillslopes and from the channel banks. Morphologically significant sediments move mainly as bed load, mainly at low intensity, and there is no standard method for measurement. The larger clastic and woody elements in the channel form persistent structures that trap significant volumes of sediment, reducing sediment transport in the short term and substantially increasing channel stability. The presence of such structures makes modeling of sediment flux in these channels — a potential substitute for measurement — difficult. Channel morphology is discussed, with some emphasis on wood related features. The problem of classifying small channels is reviewed, and it is recognized that useful classifications are purpose oriented. Reach scale and channel unit scale morphologies are categorized. A “disturbance cascade” is introduced to focus attention on sediment transfers through the slope channel system and to identify management practices that affect sediment dynamics and consequent channel morphology. Gaps in knowledge, errors, and uncertainties have been identified for future research.  相似文献   

3.
ABSTRACT: The pebble count, a quick and simple technique for characterizing streambed materials, has long been used by geomorphologists, hydrologists, and river engineers. This paper describes how pebble counts have been used to monitor fine sediment (particles less then 6 mm in size) on the Boise National Forest. Data from two watersheds subjected to major wildfires and the failure of a dam are discussed. Following wildfires, pebble count data showed increases in streambed fines followed by improvement of the stream substrate with time as the watersheds recovered. For the dam failure, pebble count data showed an increase in fines in the stream below the failure and were used to track the distance of sediment movement downstream. Pebble counts may be best used where fine sediment on channel substrates are a concern, such as in granitic watersheds where coarse sands are a large component of bedload and land-disturbing activities introduce fine sediment into streams. Pebble counts are found to be a simple and rapid monitoring method that can be used to help determine whether or not land management activities or land disturbances are introducing fine sediment into streams.  相似文献   

4.
ABSTRACT: A simulation analysis of contaminated sediment transport involves model selection, data collection, model calibration and verification, and evaluation of uncertainty in the results. Sensitivity analyses provide information to address these issues at several stages of the investigation. A sensitivity analysis of simulated contaminated sediment transport is used to identify the most sensitive output variables and the parameters most responsible for the output variable sensitivity. The output variables included are streamflow and the flux of sediment and Cs137. The sensitivities of these variables are measured at the field and intermediate scales, for flood and normal flow conditions, using the HSPF computer model. A sensitivity index was used to summarize and compare the results of a large number of output variables and parameters. An extensive database was developed to calibrate the model and conduct the sensitivity analysis on a 6.2 mi2 catchment in eastern Tennessee. The fluxes of sediment and Cs137 were more sensitive than streamflow to changes in parameters for both flood and normal flow conditions. The relative significance of specific parameters on output variable sensitivity varied according to the type of flow condition and the location in the catchment. An implications section illustrates how sensitivity analysis results can help with model selection, planning data collection, calibration, and uncertainty analysis.  相似文献   

5.
ABSTRACT: Armored stream segments may affect the suspended sediment regime of small mountain streams in western Oregon by the release of fine sediments stored in the bed gravels. Sieve analysis of bed materials indicated that at least 30 percent of the suspended sediment yield for the 1975–76 winter had been stored in the streambed. Suspended sediment concentrations during storm-generated runoff were influenced by stream discharge and hydrograph characteristics. Sediment-discharge relations for individual storms were characterized by hysteresis loops. A seasonal flushing of fines was shown by a progressive decrease in the ratio of suspended sediment to stream discharge during the winter runoff period.  相似文献   

6.
ABSTRACT: The objective of this study was to examine the chemistry of Coalbed Methane (CBM) discharge water reacting with semi‐arid ephemeral stream channels in the Powder River Basin, Wyoming. The study area consisted of two ephemeral streams: Burger Draw and Sue Draw. These streams are tributaries to the perennial Powder River. Samples were collected bimonthly from three CBM discharge points and seven channel locations in Burger Draw and Sue Draw. Samples were also collected bimonthly from the Powder River above and below the confluence of Burger Draw. Before sample collection, the pH and electrical conductivity (EC) were measured in the field. Samples were transported to the laboratory and analyzed for alkalinity, major cations, and anions. From the measurement of sodium (Na), calcium (Ca), and magnesium (Mg), practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated. Results suggest pH and EC of CBM discharge water was 7.1 and 4.3 dS/m, respectively. The CBM discharge water consisted of higher concentrations of sodium and alkalinity compared to other components. The pH of CBM discharge water increased significantly (p = 0.000) in the downstream channel of Burger Draw from 7.1 to 8.84 before it joined with the Powder River. Dissolved calcium concentration of CBM discharge water decreased significantly (p = 0.000) in the downstream channel water. Subsequently, SARp increased approximately from 24 to 29. The SARt also increased significantly (p = 0.001) in the downstream channel water. For instance, SARt of CBM discharge water increased from 32.93 to 45.5 downstream channels after the confluence of Sue Draw with the Burger Draw. The only significant difference in water chemistry above and below the confluence of Burger Draw with the Powder River was pH, which increased from 8.36 to 8.52. The significant increase in SAR values of CBM discharge water in Burger Draw and Sue Draw tributaries suggest a careful monitoring of salinity and sodicity is needed if CBM discharge water is used for irrigation in semi‐arid environments. Results discussed in this study will be useful to downstream water users who depend on water for irrigation.  相似文献   

7.
ABSTRACT: The U.S. Environmental Protection Agency (USEPA) Water Quality Analysis Simulation Program (WASP5) was used to model the transport and sediment/water interactions of metals under low flow, steady state conditions in Tenmile Creek, a mountain stream supplying drinking water to the City of Helena, Montana, impacted by numerous abandoned hard rock mines. The model was calibrated for base flow using data collected by USEPA and validated using data from the U.S. Geological Survey (USGS) for higher flows. It was used to assess metals loadings and losses, exceedances of Montana State water quality standards, metals interactions in stream water and bed sediment, uncertainty in fate and transport processes and model parameters, and effectiveness of remedial alternatives that include leaving contaminated sediment in the stream. Results indicated that during base flow, adits and point sources contribute significant metals loadings to the stream, but that shallow ground water and bed sediment also contribute metals in some key locations. Losses from the water column occur in some areas, primarily due to adsorption and precipitation onto bed sediments. Some uncertainty exists in the metal partition coefficients associated with sediment, significance of precipitation reactions, and in the specific locations of unidentified sources and losses of metals. Standards exceedances are widespread throughout the stream, but the model showed that remediation of point sources and mine waste near water courses can help improve water quality. Model results also indicate, however, that alteration of the water supply scheme and increasing base flow will probably be required to meet all water quality standards.  相似文献   

8.
Headwater streams comprise 60 to 80 percent of the cumulative length of river networks. In hilly to mountainous terrain, they reflect a mix of hillslope and channel processes because of their close proximity to sediment source areas. Their morphology is an assemblage of residual soils, landslide deposits, wood, boulders, thin patches of poorly sorted alluvium, and stretches of bedrock. Longitudinal profiles of these channels are strongly influenced by steps created by sediment deposits, large wood, and boulders. Due to the combination of small drainage area, stepped shallow gradient, large roughness elements, and cohesive sediments, headwater streams typically transport little sediment or coarse wood debris by fluvial processes. Consequently, headwaters act as sediment reservoirs for periods spanning decades to centuries. The accumulated sediment and wood may be episodically evacuated by debris flows, debris floods, or gully erosion and transported to larger channels. In mountain environments, these processes deliver significant amounts of materials that form riverine habitats in larger channels. In managed steepland forests, accelerated rates of landslides and debris flows resulting from the harvest of headwater forests have the potential to seriously impact the morphology of headwater streams and downstream resources.  相似文献   

9.
ABSTRACT: The effect of ice cover on vertical transfer is examined based on the Reynolds' analogy and composite logarithmic velocity distributions. A finite difference scheme is used to predict concentration profiles in a two-dimensional channel. Comparisons made between the ice-covered condition and the ice-free condition show that considerable reduction in mixing capacity of the channel is caused by the ice cover.  相似文献   

10.
Bedload transport was measured with two sampler types (vortex tube and Helley-Smith pressure differential) for three major storms at Flynn Creek, which drains a 2.2-km2 forested watershed in the Oregon Coast Range. The largest flow during two winters of monitoring had a peak discharge of 0.79 m3 s-1 km-2, with an associated recurrence interval of ? 1.3 yr. The median particle diameter of sediment in transport was generally < 1 mm. The vortex tube and its associated sample box were relatively inefficient at trapping particles < 10 mm in diameter; however, even after transport rates were adjusted to account for sampling deficiencies of the sample box, they still averaged 42–47 percent of those obtained with the Helley-Smith sampler. Organic matter and sand sized sediments in transport also were observed to partially plug the 0.2-mm-mesh bag of the Helley-Smith sampler. Large temporal variability in bedload transport rates was measured during periods of high flow.  相似文献   

11.
Sage Creek in south‐central Wyoming is listed as impaired by the U.S. Environmental Protection Agency (USEPA) due to its sediment contribution to the North Platte River. Despite the magnitude of sediment impacts on streams, little research has been conducted to characterize patterns of sediment transport or to model suspended sediment concentration in many arid western U.S. streams. This study examined the relationship between stream discharge and suspended sediment concentration near the Sage Creek and North Platte River confluence from 1998 through 2003. The objectives were to determine patterns of stream discharge and suspended sediment concentration, produce a sediment prediction model, and compare sediment concentrations for the six‐year period. Stream discharge and suspended sediment transport responded rapidly to convective storms and spring runoff events. During the study period, events exceeding 0.23 m3/s accounted for 92 percent of the sediment load, which is believed to originate from erodible headwater uplands. Further analysis of these data indicates that time series modeling is superior to simple linear regression in predicting sediment concentration. Significant increases in suspended sediment concentration occurred in all years except 2003. This analysis suggests that a six‐year monitoring record was insufficient to factor out impacts from climate, geology, and historical sediment storage.  相似文献   

12.
ABSTRACT: One-dimensional and two-dimensional modeling approaches were compared for their abilities in predicting overland runoff and sediment transport. Both 1-D and 2-D models were developed to test the hypothesis that the 2-D modeling approach could improve the model predictions over the 1-P approach, based on the same mathematical representations of physical processes for runoff and sediment transport. The models developed in this study were applied to overland areas with cross slopes. A hypothetical case and an experimental study reported by Storm (1991) were used. Based on the simulation results from the selected hypothetical case and experimental study, the 2-D model provided better representation of spatial distribution of flow depths and sediment concentrations than the 1-D model. However, no significant differences in predictions of total runoff volume and sediment yield at the outlet area were found between the 1-D and 2-D models.  相似文献   

13.
ABSTRACT: A meandering stream channel was simulated in the Hydraulics Laboratory at Colorado State University and a series of tests was conducted using four types of vegetation to evaluate the potential effects of vegetation on sediment deposition and retention in a stream channel. The data collected included average flow velocity, flow depth, length of vegetation, density of vegetation, cross-sectional area of the vegetative stem, wetted perimeter of the vegetative stem, and injection and flushing time. The findings indicated that the vegetation could retain from 30 to 70 percent of the deposited sediments. The ability of vegetation to entrap and retain sediment is related to the length and cross-sectional area of the vegetation. The variables describing the flow and the vegetative properties were combined to form a predictive parameter, the sedimentation factor (Sd) that can be compared with the amount of sediment entrapped by vegetation in a stream system. A relation was developed correlating vegetation length to sediment retention after flushing for flexibility and rigid vegetation.  相似文献   

14.
ABSTRACT: Stream channels are known to change their form as a result of watershed urbanization, but do they restabilize under subsequent conditions of constant urban land use? Streams in seven developed and developing watersheds (drainage areas 5–35 km2) in the Puget Sound lowlands were evaluated for their channel stability and degree of urbanization, using field and historical data. Protocols for determining channel stability by visual assessment, calculated bed mobility at bankfull flows, and resurveyed cross‐sections were compared and yielded nearly identical results. We found that channel restabilization generally does occur within one or two decades of constant watershed land use, but it is not universal. When (or if) an individual stream will restabilize depends on specific hydrologic and geomorphic characteristics of the channel and its watershed; observed stability is not well predicted by simply the magnitude of urban development or the rate of ongoing land‐use change. The tendency for channel restabilization suggests that management efforts focused primarily on maintaining stability, particularly in a still‐urbanizing watershed, may not always be necessary. Yet physical stability alone is not a sufficient condition for a biologically healthy stream, and additional rehabilitation measures will almost certainly be required to restore biological conditions in urban systems.  相似文献   

15.
This paper reviews suspended sediment sources and transport in small forest streams in the Pacific Northwest region of North America, particularly in relation to riparian management. Mass movements, reading and yarding practices, and burning can increase the supply of suspended sediment. Sediment yields recovered to pre‐harvest levels within one to six years in several paired catchment studies. However, delayed mass movements related to roads and harvesting may produce elevated suspended sediment yield one or more decades after logging. There is mixed evidence for the role of streamside tree throw in riparian buffers in supplying sediment to streams. Harvesting within the riparian zone may not increase suspended sediment yield if near stream soils are not disturbed. Key knowledge gaps relate to the relative roles of increased transport capacity versus sediment supply, the dynamics of fine sediment penetration into bed sediments, and the effects of forest harvesting on suspended sediment at different scales. Future research should involve nested catchments to examine suspended sediment response to forest practices at multiple spatial scales, in combination with process‐based field studies.  相似文献   

16.
ABSTRACT: A Helley-Smith pressure differential bedload sampler was used to measure bedload transport at consecutive riffle sections of a riffle-pool-riffle sequence on Bambi Creek, a small (154 ha), second-order stream on Chichagof Island, Alaska, during four storms over a 2-year period. Maximum bedload transport rate measured was 4920 kg/h at a streamflow of 2.35 m3/s corresponding to a storm having a 5-year return interval. Transport of larger sediment (> 8 mm) varied systematically with streamflow at the two sampling locations. At flows up to approximately bankfull, transport of large sediment was greatest at the upstream site; at flows above bankfull, transport of large sediment was greatest at the downstream site. The net import of large sediment to the pool during moderate stormflows and net export of large sediment from the pool during flows above bankfull may be related to a “convergence” or “reversal” of competence between the upstream riffle and subsequent pool at flows approximating bankfull stage. Cross-sections monitored within the study reach indicate that stormflows resulted in net filling of the riffle sections and net scour of the pool; periods of low streamflow resulted in net scour of the riffles and net filling of the pooL  相似文献   

17.
ABSTRACT: Most studies of nutrient loss from small study watersheds ignore a potentially important loss transported by the suspended sediment load. We proposed that the geology and vegetation of a watershed are predictors of the nutrient and heavy metal transporting capacity of its suspended sediment. Analyses of acid-digestable and extractable nutrients showed differences for sediments derived from ponderosa pine forests in the Southwest on different geologies. These differences were similar for soil, stream bank, and stream channel material for a given site. Suspended sediment collections had nutrient concentrations similar to those of stream channel collections. Different vegetation on a given geology affected primarily the organic matter content, cation exchange capacity, total P, and levels of extractable nutrients in sediment.  相似文献   

18.
Pebble counts have been used for a variety of monitoring projects and are an important component of stream evaluation efforts throughout the United States. The utility of pebble counts as a monitoring tool is, however, based on the monitoring objectives and the assumption that data are collected with sufficient precision to meet those objectives. Depending upon the objective, sources of variability that can limit the precision of pebble count data include substrate heterogeneity at a site, differences in substrate among sample locations within a stream reach, substrate variability among streams, differences in when the substrate sample is collected, differences in how and where technicians pick up substrate particles, and how consistently technicians measure the intermediate axis of a selected particle. This study found that each of these sources of variability is of sufficient magnitude to affect results of monitoring projects. Therefore, actions such as observer training, increasing the number of pebbles measured, evaluating several riffles within a reach, evaluating permanent sites, and narrowing the time window during which pebble counts are conducted should be considered in order to minimize variability. The failure to account for sources of variability associated with pebble counts within the study design may result in failing to meet monitoring objectives.  相似文献   

19.
ABSTRACT: Sediment characteristics of samples from physiographic provinces of the continental United States were examined to determine variability within and among physiographic provinces and to compare characteristics of freshwater and saltwater sediments. Organic carbon, particle size distribution, particle surface area, cation exchange capacity, redox potential, and percent solids were examined for a variety of lotic and lentic freshwater sediment samples and nearshore estuarine and marine samples from the continental United States. Analysis of variance indicated significant differences (p < 0.05) within and among physiographic provinces for both freshwater and saltwater sediment samples. Sediment characteristics within physiographic provinces were as variable as characteristics among provinces. Freshwater sediment characteristics were not significantly different (p < 0.05) from saltwater sediment characteristics. Saltwater sediment characteristics were observed to be more strongly correlated with each other than were freshwater sediment characteristics. Based on the variability of sediment samples examined in this study, a specific site may require 50 or more replicate samples to be adequately or accurately represented.  相似文献   

20.
ABSTRACT: Various temporal sampling strategies are used to monitor water quality in small streams. To determine how various strategies influence the estimated water quality, frequently collected water quality data from eight small streams (14 to 110 km2) in Wisconsin were systematically subsampled to simulate typically used strategies. These subsets of data were then used to estimate mean, median, and maximum concentrations, and with continuous daily flows used to estimate annual loads (using the regression method) and volumetrically weighted mean concentrations. For each strategy, accuracy and precision in each summary statistic were evaluated by comparison with concentrations and loads of total phosphorus and suspended sediment estimated from all available data. The most effective sampling strategy depends on the statistic of interest and study duration. For mean and median concentrations, the most frequent fixed period sampling economically feasible is best. For maximum concentrations, any strategy with samples at or prior to peak flow is best. The best sampling strategy to estimate loads depends on the study duration. For one‐year studies, fixed period monthly sampling supplemented with storm chasing was best, even though loads were overestimated by 25 to 50 percent. For two to three‐year load studies and estimating volumetrically weighted mean concentrations, fixed period semimonthly sampling was best.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号