首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: In order to promote a uniform and consistent approach for floodflow frequency studies, the U.S. Water Resources Council has recommended the use of the log-Pearson type III distribution with a generalized skew coefficient. This paper investigates various methods of determining generalized skew coefficients. A new method is introduced that determines generalized skew coefficients using a weighting procedure based upon the variance of regional (map) skew coefficients and the variance of sample skew coefficients. The variance of skew derived from sample data is determined using either of two non-parametric methods called the jackknife or bootstrap. Applications of the new weighting procedure are presented along with an experimental study to test various weighting procedures to derive generalized skew coefficients.  相似文献   

2.
3.
ABSTRACT: Considerable effort is expended each year in making flood peak estimates at both gaged and ungaged sites. Many methods, both simplistic and complex, have been proposed for making such estimates. The hydrologist that must make an estimate at a particular site is interested in the accuracy of the estimate. Most methods are developed using either statistical analyses or analytical optimization schemes. While publications describing these methods often include some statistical measure of goodness-of-flt, the terminology often does not provide the potential user with an answer to the question,‘How accurate is the estimate?’ That is, statistical terminology often are not used properly, which may lead to a false sense of security. The use of the correct terminology will help potential users evaluate the usefulness of a proposed method and provide a means of comparing different methods. This study provides definitions for terms often used in literature on flood peak estimation and provides an interpretation for these terms. Specific problems discussed include the use of arbitrary levels of significance in statistical tests of hypotheses, the identification of both random and systematic variation in estimates from hydrologic methods, and the difference between accuracy of model calibration and accuracy of prediction.  相似文献   

4.
ABSTRACT: The proportionality coefficient, K, and the weighing parameter, X, required for the Muskingum-Cunge Flood Routing Method are dependent on the hydraulic characteristics of the channel and the dynamic characteristic of the flood wave. This work focuses on the determination of the Muskingum-Cunge Flood Routing Method parameters for streams where measured hydrographs are not available (i.e., ungaged streams) with floods that stay within the channel banks. In the present work, a gaged creek was used and a dynamic wave was routed to test the reliability of the parameters determined through the Schaefer and Stevens technique (Schaefer and Stevens, 1978). The predicted outflow hydrographs are compared to the hydrographs obtained for the same stream determined with the Muskingum Routing option of the HEC-1 program. Cypress Creek in Harris County, Texas, was the model for this work; and the corresponding data were extracted from the Grant Road and Westfield, Texas, USGS gaging stations.  相似文献   

5.
ABSTRACT: In flood frequency analysis it is required to estimate the values of probabilities based on plotting formula. All of the many existing formula provide different results, particularly at the tails of the distribution. The existing practice in selection of a particular formula is rather arbitrary; and often Weibull's formula is recommended, which provided biased and conservative results. Based on the mean square criterion, a new plotting formula is developed, and it is given by Fm= (m - 0.24)/(N + 0.5).  相似文献   

6.
ABSTRACT: Low-flow estimates, as determined by probabilistic modeling of observed data sequences, are commonly used to describe certain streamflow characteristics. Unfortunately, however, reliable low-flow estimates can be difficult to come by, particularly for gaging sites with short record lengths. The shortness of records leads to uncertainties not only in the selection of a distribution for modeling purposes but also in the estimates of the parameters of a chosen model. In flood frequency analysis, the common approach to mitigation of some of these problems is through the regionalization of frequency behavior. The same general approach is applied here to the case of low-flow estimation, with the general intent of not only improving low-flow estimates but also illustrating the gains that might be attained in so doing. Data used for this study is that which has been systematically observed at 128 streamflow gaging sites across the State of Alabama. Our conclusions are that the log Pearson Type 3 distribution is a suitable candidate for modeling of Alabama low-flows, and that the shape parameter of that distribution can be estimated on a regional basis. Low-flow estimates based on the regional estimator are compared with estimates based on the use of only at-site estimation techniques.  相似文献   

7.
ABSTRACT: Several methods have been developed to interpolate point rainfall data and integrate areal rainfall data from any network of stations. From previous studies, it can be concluded that models for spatial analysis of rainfall are dependent on topography, area of analysis, type of rainfall, and density of gauging network. The purpose of this study is to evaluate a set of six appropriate models for point and areal rainfall estimations over a 4000 square mile area in South Florida. In this study, a case of developing spatial continuity model for monthly rainfall from a database that had various lengths of records and missing data is documented. The spatial correlation and variogram models for monthly rainfall were developed. Six methods of spatial interpolation were applied and the results validated with historical observations. The results of the study indicate that the multiquadric, kriging, and optimal interpolation schemes are the best three methods for interpolation of monthly rainfall within the study area. The optimal and kriging methods have the advantage of providing estimates of the error of interpolation. The optimal interpolation method uses the spatial correlation function and the kriging method uses the variogram function. The two spatial functions are related. Either of the two methods provide good estimates of monthly point and areal rainfall in the study area.  相似文献   

8.
ABSTRACT: Twenty-two gaging stations were selected for developing a regional flood frequency curve for small (area less than 2 square miles) watersheds in southern Illinois. Five probability functions were compared, and the extreme value type I function was selected to develop the regional flood curve. The curve was generated with the index flood method and also another empirical method that related the function parameters to the watershed area. Estimated peak discharges with various return periods were compared with the results obtained from multiple regression analysis.  相似文献   

9.
ABSTRACT: Many rainfall-runoff modeling studies compare flood quantiles for different land-use and/or flood mitigation scenarios. However, when flood quantiles are estimated using conventional statistical methods, comparisons may be misleading because the estimates often misrepresent the quantile relationship between scenarios. An alternate statistical procedure is proposed, in which rainfall-runoff modeling is used to evaluate an approximate relationship between flood quantiles for different scenarios. Monte Carlo experiments show that the proposed method produces flood quantile estimates that better reflect the differences between scenarios. The ratio between quantiles for different scenarios is more accurate, so comparisons of the scenarios using flood quantiles are more reliable.  相似文献   

10.
ABSTRACT: Flood potential data can be effectively interpreted if simple frequency analysis concepts are used to explain the significance of flood potential. Instead of simply presenting data as a quantitative amount or as a percentage of the average condition, predictions can be discussed in terms of their probabilities of exceedance, or return periods. Criteria are presented for evaluating the significance of various return periods. Frequency interpretations are applied to snow course data, peak flow forecasts, and streamflow volume forecasts in northern Utah to illustrate these concepts. In addition, access to realtime data allows tracking of snowmelt progression and identification of any deviations from the forecast flood potential situation. Several data elements, including snowpack, streamfiow volume and peak, and realtime data are jointly evaluated to assess potential hazard and probable risk.  相似文献   

11.
ABSTRACT: The SMEMAX transformation, its modified versions and power transformation were applied to 55 long-term records of annual maximum flood flows tested previously for independence, homogeneity and completeness. Even though SMEMAX transformation reduced the coefficient of skewness to near zero for flood data, their distribution was not a true normal distribution. In almost all cases, the coefficient of kurtosis was quite different from 3.0 of the normal distribution. Empirical criteria showed that SMEMAX transformation performed well only for 40 (70 percent) of the 55 stations tested. Its performance level dropped, especially for stations which had both the coefficient of skewness and kurtosis greater than 3.0 and 10.0, respectively. Power transformation was generally better in transforming the flood data to a normal distribution. It performed well for 50 (90 percent) of the 55 stations tested. The coefficient of skewness in case of the data transformed by power transformation was much closer to the zero value than in the case of SMEMAX transformed series. The SMEMAX transformation and its two modified versions yielded identical results when flood frequency analysis was performed. Computationally, all three methods were equally simple and easy to apply for flood frequency analysis. In some cases, the coefficient of kurtosis for the transformed distributions obtained both by SMEMAX and power transformations deviated farther from that for the normal distribution than for the parent distribution.  相似文献   

12.
ABSTRACT: SMEMAX is a transformation technique suggested by Bethalmy to transform random hydrological series to a near normal series. This paper puts forward an alternative simpler form of the SMEMAX transformation. The modified SMEMAX transformation avoids use of trigonometric functions and the transformed variables range from 0 to 100.  相似文献   

13.
ABSTRACT: Both L-moment and nonparametric frequency analyses were performed on a series of annual maximum floods from New Brunswick, Canada. The L-moment analysis concluded that the data were generated from a unimodal Generalized Extreme Value (GEV) distribution. However, the nonparametric frequency analysis indicated that a majority of stations followed nonunimodal mixed distributions since peak flows occur during different seasons and are the result of different generating mechanisms. The coupling of L-moment and nonparametric analyses facilitates mixed distribution identification. Thus, the nonparametric method helps in identifying underlying probability distribution, especially when samples arise from mixed distributions.  相似文献   

14.
ABSTRACT: Statistical analysis of watershed parameters derived using a Geographical Information system (GIS) was done to develop equations for estimating the 7d–10yr, 30d–10yr, and 7d–2yr low flow for watersheds in humid montane regions of Puerto Rico. Digital elevation models and land use, geology, soils, and stream network coverages were used to evaluate 21 geomorphic, 10 stream channel, 9 relief, 7 geology, 4 climate, and 2 soil parameters for each watershed. To assess which parameters should be used for further investigation, a correlation analysis was used to determine the independence and collinearity among these parameters and their relationship with low flows. Multiple regression analyses using the selected parameters were then performed to develop the statistical models of low flows. The final models were selected in the basis of the Mallow Cp statistic, the adjusted R2, the Press statistic, the degree of collinearity, and an analysis of the residuals. In the final models, drainage density, the ratio of length of tributaries to the length of the main channel, the percent of drainage area with northeast aspect, and the average weighted slope of the drainage were the most significant parameters. The final models had adjusted standard errors of 58.7 percent, 59.2 percent, and 48.6 percent for the 7d–10yr, 30d–10yr, and 7d–2yr low flows respectively. For comparison, the best model based on watershed parameters that can be easily measured without a GIS had an adjusted standard error of 82.8 percent.  相似文献   

15.
ABSTRACT: Bivariate and trivariate distributions have been derived from the logistic model for the multivariate extreme value distribution. Marginals in the models are extreme value type I distributions for two-component mixture variables (mixed Gumbel distribution). This paper is a continuation of the previous works on multivariate distribution in hydrology. Interest is focused on the analysis of floods which are generated by different types of storms. The construction of their corresponding probability distributions and density functions are described. In order to obtain the parameters of such a bivariate or trivariate distribution, a generalized maximum likelihood estimation procedure is proposed to allow for the cases of samples with different lengths of record. A region in Northern Mexico with 42 gauging stations, grouped into two homogeneous regions, has been selected to apply the models. Results produced by the multivariate distributions have been compared with those obtained by the Normal, log-Normal-2, log-Normal-3, Gamma-2, Gamma-3, log-Pearson-3, Gumbel, TCEV and General Extreme Value distributions. Goodness of fit is measured by the criterion of standard error of fit. Results suggest that the proposed models are a suitable option to be considered when performing flood frequency analysis.  相似文献   

16.
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies.  相似文献   

17.
ABSTRACT A detailed review of current methods and criteria used in parameter estimation in hydrology is presented. The effect of errors in the data set and the effect of interactions between methods of analysis, criteria, data set errors, and modeling assumptions are reviewed and discussed briefly. It is concluded that study of techniques, criteria, data set errors and particularly interactions between these, is essential to further progress in hydrologic modeling.  相似文献   

18.
ABSTRACT: A large storm in December 1990 allowed the evaluation of flood predictions from a hydrologic model (TOPMODEL) that had been previously calibrated on the West Fork of Walker Branch Watershed, a gauged 37.5 ha catchment near Oak Ridge, Tennessee. The model predicts both hydrograph dynamics and the spatial distribution of overland flow using an index based on topography. Maximum extent of overland flow during the storm was determined from patterns of leaf litter removal from valley bottoms. Both the flood hydrograph and the extent of overland flow were accurately predicted using model parameters obtained from a three-month period of normal flow conditions during 1983.  相似文献   

19.
ABSTRACT: Methods of computing probabilities of extreme events that affect the design of major engineering structures have been developed for most failure causes, but not for design floods such as the probable maximum flood (PMF). Probabilities for PMF estimates would be useful for economic studies and risk assessments. Reasons for the reluctance of some hydrologists to assign a probability to a PMF are discussed, and alternative methods of assigning a probability are reviewed. Currently, the extrapolation of a frequency curve appears to be the most practical alternative. Using 46 stations in the Mid-Atlantic region, the log-gamma, log-normal, and log-Gumbel distributions were used to estimate PMF probabilities. A 600,000-year return period appears to be a reasonable probability to use for PMFs in the Mid-Atlantic region. The coefficient of skew accounts for much of the variation in computed probabilities.  相似文献   

20.
ABSTRACT: When nonparametric frequency analysis was performed on 183 stations from Ontario and Quebec, unimodal and multimodal maximum annual flood density functions were discovered. In order to determine generating mechanisms, a monthly partitioning of the annual maximum floods was undertaken. The timing of the floods revealed that the unimodal distributions reflected a single flood generating mechanism while the multi-modal densities reflected two or more mechanisms. Based on the division of the flood series by mechanisms, nine homogeneous regions were delineated. L-moment distributional homogeneity tests along with smaller standard errors for the regional equations supported the delineation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号