首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Agricultural chemical transport to surface water and the linkage to other hydrological compartments, principally ground water, was investigated at five watersheds in semiarid to humid climatic settings. Chemical transport was affected by storm water runoff, soil drainage, irrigation, and how streams were linked to shallow ground water systems. Irrigation practices and timing of chemical use greatly affected nutrient and pesticide transport in the semiarid basins. Irrigation with imported water tended to increase ground water and chemical transport, whereas the use of locally pumped irrigation water may eliminate connections between streams and ground water, resulting in lower annual loads. Drainage pathways in humid environments are important because the loads may be transported in tile drains, or through varying combinations of ground water discharge, and overland flow. In most cases, overland flow contributed the greatest loads, but a significant portion of the annual load of nitrate and some pesticide degradates can be transported under base-flow conditions. The highest basin yields for nitrate were measured in a semiarid irrigated system that used imported water and in a stream dominated by tile drainage in a humid environment. Pesticide loads, as a percent of actual use (LAPU), showed the effects of climate and geohydrologic conditions. The LAPU values in the semiarid study basin in Washington were generally low because most of the load was transported in ground water discharge to the stream. When herbicides are applied during the rainy season in a semiarid setting, such as simazine in the California basin, LAPU values are similar to those in the Midwest basins.  相似文献   

2.
Abstract: The transport of reactive contaminants in the subsurface is generally affected by a large number of nonlinear and often interactive physical, chemical, and biological processes. Simulating these processes requires a comprehensive reactive transport code that couples the physical processes of water flow and advective-dispersive transport with a range of biogeochemical processes. Two recently developed coupled geochemical models that are both based on the HYDRUS-1D software package for variably saturated flow and transport are summarized in this paper. One model resulted from coupling HYDRUS-1D with the UNSATCHEM module. While restricted to major ion chemistry, this program enables quantitative predictions of such problems as analyzing the effects of salinity on plant growth and the amount of water and amendments required to reclaim salt-affected soil profiles. The second model, HPI, resulted from coupling HYDRUS-1D with the PHREEQC biogeochemical code. The latter program accounts for a wide range of instantaneous or kinetic chemical and biological reactions, including complexation, cation exchange, surface complexation, precipitation dissolution and/or redox reactions. The versatility of HP1 is illustrated in this paper by means of two examples: the leaching of toxic trace elements and the transport of the explosive TNT and its degradation products.  相似文献   

3.
ABSTRACT: Since 1991, the U.S. Geological Survey has been conducting the National Water Quality Assessment (NAWQA) Program to determine the quality of the Nation's water resources. In an effort to obtain a better understanding of why pesticides are found in shallow ground water on a national scale, a set of factors likely to affect the fate and transport of two herbicides in the subsurface were examined. Atrazine and metolachlor were selected for this discussion because they were among the most frequently detected pesticides in ground water during the first phase of the NAWQA Program (1993 to 1995), and each was the most frequently detected compound in its chemical class (triazines and acetanilides, respectively). The factors that most strongly correlated with the frequencies of atrazine detection in shallow ground‐water networks were those that provided either: (1) an indication of the potential susceptibility of ground water to atrazine contamination, or (2) an indication of relative ground‐water age. The factors most closely related to the frequencies of metolachlor detection in ground water, however, were those that estimated or indicated the intensity of the agricultural use of metolachlor. This difference is probably the result of detailed use estimates for these compounds being available only for agricultural settings. While atrazine use is relatively extensive in nonagricultural settings, in addition to its widespread agricultural use, metolachlor is used almost exclusively for agricultural purposes. As a result, estimates of agricultural applications provide a less reliable indication of total chemical use for atrazine than for metolachlor. A multivariate analysis demonstrated that the factors of interest explained about 50 percent of the variance in atrazine and metolachlor detection frequencies among the NAWQA land‐use studies examined. The inclusion of other factors related to pesticide fate and transport in ground water, or improvements in the quality and accuracy of the data employed for the factors examined, may help explain more of the remaining variance in the frequencies of atrazine and metolachlor detection.  相似文献   

4.
ABSTRACT: Overlapping and adjacent ground water investigations are common in areas where aquifers are threatened by industrial development. In the Indianapolis area in Marion County, Indiana, a patchwork of ground water flow models have been used during the past 20 years to evaluate ground water resources and to determine the effects of local contamination. In every case these ground water models were constructed from scratch. Site specific finite difference grids or finite element meshes inhibit the direct reuse of input data when the area of interest shifts. Because the aquifer is not discretized into a grid or mesh with analytic element models, there are unique opportunities for direct reuse of model input data. In two applications of this principle we illustrate how the newly emerging analytic element method allows a fairly straightforward reuse of model input data from previous models in the same general area. In analytic element models of Central Indiana, streams and their tributaries are represented in different resolutions. Input data items of several modeling studies are stored and cataloged on disk in such a manner that they can be selectively retrieved by a data management program PREPRO. In this manner, a new ground water model can be set up quickly with input data which have been previously defined and tested during model calibration.  相似文献   

5.
ABSTRACT: The ability of batch-extraction experiments to predict postmining ground water quality was evaluated. As a basis for evaluation, mineralogical and water quality data were used to identify the geochemical reactions that controlled the major-ion chemistry in batch-extraction experiments. The experiments used water and spoil material collected from a surface-coal mine in the Powder River basin of northeast Wyoming. The batch-extraction experiments consisted of a 2:1 solid:liquid ratio of ground water and spoil material (by weight). The chemical composition of the resulting batch-extracts was determined after a contact time of 24 hours. Thermodynamically-favorable reactions included calcite precipitation, gypsum dissolution, and formation of kaolinite as a result of orthoclase feldspar hydrolysis. Three reaction models were consistent with the therinodynanuc and mineralogic data. In general, the extracts had smaller major-ion concentrations than did the water samples collected from the spoil aquifer. Correction ratios were calculated from these experiments and could be used in combination with additional batch-extractions at existing or future lease areas to predict the quality of the ground water after mining.  相似文献   

6.
ABSTRACT: Dense nonaqueous phase liquid (DNAPL) contaminated ground water has proven to be exceptionally difficult to remediate for both physical and chemical reasons. Since DNAPL's are denser than water, their movement is not governed by the direction of ground water flow as is generally the case for other ground water contaminants. Additionally, DNAPLs' interactions with aquifer solids through processes such as sorption tend to make the pollution linger or sometimes apparently disappear, only to return later. Unfortunately, pump-and-treat systems, the traditional way ground water contamination is addressed, have not been effective in cleaning DNAPL contaminated water. Other remediation technologies continue to be developed to address these problems. Policy changes will also be necessary to effectively address the difficulties associated with ground water remediation.  相似文献   

7.
Profiles of retained colloids in porous media have frequently been observed to be hyper-exponential or non-monotonic with transport depth under unfavorable attachment conditions, whereas filtration theory predicts an exponential profile. In this work we present a stochastic model for colloid transport and deposition that allows various hypotheses for such deviations to be tested. The model is based on the conventional advective dispersion equation that accounts for first-order kinetic deposition and release of colloids. One or two stochastic parameters can be considered in this model, including the deposition coefficient, the release coefficient, and the average pore water velocity. In the case of one stochastic parameter, the probability density function (PDF) is characterized using log-normal, bimodal log-normal, or a simple two species/region formulation. When two stochastic parameters are considered, then a joint log-normal PDF is employed. Simulation results indicated that variations in the deposition coefficient and the average pore water velocity can both produce hyper-exponential deposition profiles. Bimodal formulations for the PDF were also able to produce hyper-exponential profiles, but with much lower variances in the deposition coefficient. The shape of the deposition profile was found to be very sensitive to the correlation of deposition and release coefficients, and to the correlation of pore water velocity and deposition coefficient. Application of the developed stochastic model to a particular set of colloid transport and deposition data indicated that chemical heterogeneity of the colloid population could not fully explain the observed behavior. Alternative interpretations were therefore proposed based on variability of the pore size and the water velocity distributions.  相似文献   

8.
There is a current need to simulate leaching and runoff of pesticide from rice (Oryza sativa L.) paddies for assessing environmental impacts on a valuable agricultural system. The objective of this study was to develop a model for determining predicted environmental concentration (PEC) in soil, runoff, and ground water through the linkage of two models, rice water quality model (RICEWQ) and vadose zone transport model (VADOFT), to simulate pesticide fate and transport within a rice paddy and underlying soil profile. Model performance was evaluated with a field data set obtained from a 2-yr field experiment in 1997 and 1998 in northern Italy. The predictions of amount of pesticide running off from the paddy field and accumulating in the paddy sediment were in agreement with measured values. Leaching into the vadose zone accounted for approximately 19% of the applied dose, but only a small amount of chemical (<0.1%) was predicted to reach ground water at a 5-m depth due to sorption and transformation in the soil. The permeability of the soil and the water management practices in the paddy field were shown to have a strong influence on pesticide fate. These factors need to be well characterized in the field if model predictions are to be successful. The combined model developed in this work is an effective tool for exposure assessments for soil, surface water, and ground water, in the particular conditions of rice cultivation.  相似文献   

9.
ABSTRACT. Interest in the geochemistry of groundwater is increasing owing to the great number of current projects involving underground liquid waste storage, artificial recharge of potable water, accidental contamination of groundwater bodies, sanitary landfills, and pollution monitoring. Geochemical techniques used to facilitate the understanding of a groundwater system range from extremely simple to those requiring sophisticated theories, equipment, and procedures. An interpretation of the simple trilinear diagram for samples collected from the Yucatan Peninsula of Mexico provided evidence that the fresh-water body was only a few tens of meters thick and was underlain everywhere by an extensive body of salt water. A geochemical technique that has been used effectively to identify the source of salt water in coastal aquifers is measurement of the carbon-14 concentrations. Carbon-14 has been used in a regional carbonate aquifer to determine the velocity of groundwater movement, rates of chemical reactions, and distribution of hydraulic conductivity. The application of principles of irreversible thermodynamics to groundwater systems provides a basis for constructing models which permit prediction, over both time and space, of changes in head distribution and chemical character of the water resulting from imposed stresses on the system. In essence, proper application of irreversible thermodynamics combines the potential theory of Hubbert with principles of reversible chemical thermodynamics, such as solution of carbonate minerals, to describe and explain controlling chemical reactions and processes of groundwater systems.  相似文献   

10.
ABSTRACT: The unique characteristics of the hydrogeologic system of south Florida (flat topography, sandy soils, high water table, and highly developed canal system) cause significant interactions between ground water and surface water systems. Interaction processes involve infiltration, evapotranspiration (ET), runoff, and exchange of flow (seepage) between streams and aquifers. These interaction processes cannot be accurately simulated by either a surface water model or a ground water model alone because surface water models generally oversimplify ground water movement and ground water models generally oversimplify surface water movement. Estimates of the many components of flow between surface water and ground water (such as recharge and ET) made by the two types of models are often inconsistent. The inconsistencies are the result of differences in the calibration components and the model structures, and can affect the confidence level of the model application. In order to improve model results, a framework for developing a model which integrates a surface water model and a ground water model is presented. Dade County, Florida, is used as an example in developing the concepts of the integrated model. The conceptual model is based on the need to evaluate water supply management options involving the conjunctive use of surface water and groundwater, as well as the evaluation of the impacts of proposed wellfields. The mathematical structure of the integrated model is based on the South Florida Water Management Model (SFWMM) (MacVicar et al., 1984) and A Modular Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW) (McDonald and Harbaugh, 1988).  相似文献   

11.
Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water.  相似文献   

12.
ABSTRACT: Finite element and finite difference representations of the convective-dispersive equation have been widely used in determining contaminant transport in ground water. Due to inherent uncertainties of the transport process, those representations are inexact and contain errors. Errors in field measurements are unavoidable. By combining a numerical model, a measurement equation, and the Kalman filter, optimal estimates of the state variable (contaminant concentration) can be obtained. This paper describes the algorithm and gives a numerical example of contaminant transport in a two-dimensional ground water flow. The results show significant improvement in the estimated concentration distribution by using the filtering technique.  相似文献   

13.
ABSTRACT: Snowmelt from deep mountainous snowpacks is seldom rapid enough to exceed infiltration rates; thus, the source of streamflow in many mountainous watersheds is snowmelt recharge through shallow ground water systems. The hydrologic response and interaction between surface and sub-surface flow processes in these watersheds, which is controlled by basin structure, the spatial distribution of snowmelt, and the hydrogeology of the subsurface, are not well understood. The purpose of this study was to test a three-dimensional ground water model using simulated snowmelt input to simulate ground water response to spatially distributed snowmelt on the Upper Sheep Creek Watershed located within the Reynolds Creek Experimental Watershed in Southwestern Idaho. The model was used to characterize the mountainous aquifer and to delineate the subsurface flow mechanisms. Difficulty in finding a reasonable combination of grid spacing and time stepping within the model was encountered due to convergence problems with the Picard solution to the non-linear variably saturated ground water flow equations. Simulation results indicated that flow may be either unconfined or confined depending on inflow rate and hydrogeologic conditions in the watershed. The flow mechanism had a much faster response time when confined flow occurred. Response to snowmelt from a snow drift approximately 90 m away took only a few hours when flow was confined. Simulated results showed good agreement with piezometer measurements both in magnitude and timing; however, convergence problems with the Picard solution limited applicability of the model.  相似文献   

14.
There is continuing concern over potential impacts of widespread application of nutrients and pesticides on ground- and surface-water quality. Transport and fate of nitrate and pesticides were investigated in a shallow aquifer and adjacent stream, Cow Castle Creek, in Orangeburg County, South Carolina. Pesticide and pesticide degradate concentrations were detected in ground water with greatest frequency and largest concentrations directly beneath and downgradient from the corn (Zea mays L.) field where they were applied. In almost all samples in which they were detected, concentrations of pesticide degradates greatly exceeded those of parent compounds, and were still present in ground waters that were recharged during the previous 18 yr. The absence of both parent and degradate compounds in samples collected from deeper in the aquifer suggests that this persistence is limited or that the ground water had recharged before use of the pesticide. Concentrations of NO(-)(3) in ground water decreased with increasing depth and age, but denitrification was not a dominant controlling factor. Hydrologic and chemical data indicated that ground water discharges to the creek and chemical exchange takes place within the upper 0.7 m of the streambed. Ground water had its greatest influence on surface-water chemistry during low-flow periods, causing a decrease in concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. Conversely, shallow subsurface drainage dominates stream chemistry during high-flow periods, increasing stream concentrations of Cl(-), NO(-)(3), pesticides, and pesticide degradates. These results point out the importance of understanding the hydrogeologic setting when investigating transport and fate of contaminants in ground water and surface water.  相似文献   

15.
Anaerobic microbial processes play particularly important roles in the biogeochemical functions of wetlands, affecting water quality, nutrient transport, and greenhouse gas fluxes. This study simultaneously examined nitrate and sulfate removal rates in sediments of five southwestern Michigan wetlands varying in their predominant water sources from ground water to precipitation. Rates were estimated using in situ push-pull experiments, in which 500 mL of anoxic local ground water containing ambient nitrate and sulfate and amended with bromide was injected into the near-surface sediments and subsequently withdrawn over time. All wetlands rapidly depleted nitrate added at ambient ground water concentrations within 5 to 20 h, with the rate dependent on concentration. Sulfate, which was variably present in porewaters, was also removed from injected ground water in all wetlands, but only after nitrate was depleted. The sulfate removal rate in ground water-fed wetlands was independent of concentration, in contrast to rates in precipitation-fed wetlands. Sulfate production was observed in some sites during the period of nitrate removal, suggesting that the added nitrate either stimulated sulfur oxidation, possibly by bacteria that can utilize nitrate as an oxidant, or inhibited sulfate reduction by stimulating denitrification. All wetland sediments examined were consistently capable of removing nitrate and sulfate at concentrations found in ground water and precipitation inputs, over short time and space scales. These results demonstrate how a remarkably small area of wetland sediment can strongly influence water quality, such as in the cases of narrow riparian zones or small isolated wetlands, which may be excluded from legal protection.  相似文献   

16.
Abstract: Water industry experts have been arguing that the traditional techniques are not an accurate means of measuring water contamination. This is mainly because these techniques emphasize neither the stochastic nature of the water contamination process nor the precision and the accuracy of the tested methods used by environmental laboratories. In this work, we describe the development and application of prototype Dynamic Bayesian Networks (DBNs) that model ground‐water quality to determine the impact of chemical contaminants on ground‐water quality in the Salalah area, which is allocated to the south of Oman. We also present a new technique for data pre‐processing because it is needed for the treatment of ground‐water datasets that are used as the data source to learn the probabilities for dynamic decision models. Among more than 20 wells in area, only four wells were selected to be analyzed and the results show that we achieved an acceptable level of efficiency.  相似文献   

17.
ABSTRACT: Increasing demands on western water are causing a mounting need for the conjunctive management of surface water and ground water resources. Under western water law, the senior water rights holder has priority over the junior water rights holder in times of water shortage. Water managers have been reluctant to conjunctively manage surface water and ground water resources because of the difficulty of quantification of the impacts to surface water resources from ground water stresses. Impacts from ground water use can take years to propagate through an aquifer system. Prediction of the degree of impact to surface water resources over time and the spatial distribution of impacts is very difficult. Response functions mathematically describe the relationship between a unit ground water stress applied at a specific location and stream depletion or aquifer water level change elsewhere in the system. Response functions can be used to help quantify the spatial and temporal impacts to surface water resources caused by ground water pumping. This paper describes the theory of response functions and presents an application of transient response functions in the Snake River Plain, Idaho. Transient response functions can be used to facilitate the conjunctive management of surface and ground water not only in the eastern Snake River Plain basin, but also in similar basins throughout the western United States.  相似文献   

18.
ABSTRACT: A methodology for ground water remediation design has been developed that interfaces ground water simulation models with an enhanced annealing optimizer. The ground water flow and transport simulators provide the ability to consider site‐specific contamination and geohydrologic conditions directly in the assessment of alternative remediation system designs. The optimizer facilitates analysis of tradeoffs between technical, environmental, regulatory, and financial risks for alternative design and operation scenarios. A ground water management model using an optimization method referred to as “enhanced annealing” (simulated annealing enhanced to include “directional search” and “memory” mechanisms) has been developed and successfully applied to an actual restoration problem. The demonstration site is the contaminated unconfined aquifer referred to as N‐Springs located at Han‐ford, Washington. Results of the demonstration show the potential for improving groundwater restoration system performance while reducing overall system cost.  相似文献   

19.
To answer the difficult question of how to integrate operation of ground and surface water supplies into their management plans, the decision-makers must be able to predict the effects of various alternative modes of operation and meteorological conditions on the groundwater basin. Many types of models have been used for simulating the behavior of groundwater basins under these changes. Analog simulators, analog computers, and digital computers have been employed for model development. To achieve plausible models, detailed hydraulic and hydrologic characteristics are required, such as data on transmissivity, storage, and net deep percolation. These data are used in the equations that form the model. Water quality, which cannot be separated from quantity, deserves equal consideration. Recently, considerable efforts have been made to develop water quality prediction tools through the use of modeling techniques.  相似文献   

20.
ABSTRACT: Protection of ground water quality is of considerable importance to local, state, and federal governments. This study uses a 15-year mathematical programming model to evaluate the effectiveness of low-input agriculture, under alternative policy scenarios, as a strategy to protect ground water quality in Richmond County, Virginia. The analysis considers eight policy alternatives: cost-sharing for green manures, two restrictions on atrazine applications levels, chemical taxation, a restriction on potential chemical and nitrogen levels in ground water only and in surface and ground water, and two types of land retirement programs. The CREAMS and GLEAMS models were used to estimate nitrate and chemical leaching from the crop root zone. The economic model evaluates production practices, policy constraints, and water quality given a long-term profit maximizing objective. The results indicate that low-input agriculture alone may not be an effective ground water protection strategy. The policy impacts include partial adoption of low-input practices, land retirement, and the substitution of chemicals. Only mandatory land retirement policies reduced all chemical and nutrient loadings of ground water; however, they did not promote the use of low-input agricultural practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号