首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
当利用纳滤膜处理高浓度工业废液时,实验研究表明随着浓缩时间的延长,渗透液通量衰减系数和膜污染阻力提高很快;浓缩时间较短时,纳滤膜的分离过程由浓差极化控制;浓缩时间较长时,纳滤膜分离过程由浓差极化和膜污染共同控制;提高卷式纳滤膜浓缩液流量会增加纳滤膜浓差极化与膜污染的影响,板式纳滤膜恰与此相反;原浓度高的母液,其渗透液通量衰减系数和膜污染阻力随浓缩时间的延长其提高速率相对也高。  相似文献   

2.
<正>渗透(FO)膜技术作为一种低能耗、低污染的膜分离技术,在海水淡化和盐差发电等领域展现出巨大应用潜力.本文以高强度、大孔聚对苯二甲酸乙二醇酯(PET)无纺布和PET静电纺丝膜为复合支撑层,采用间苯二胺(MPD)和均苯三甲酰氯(TMC)为单体,通过界面聚合方法制备了新型高强度纳米纤维FO膜.采用场发射扫描电镜(SEM)、表面接触角测试仪、抗拉测试仪等对制备的复合支撑层膜和FO膜的表面形貌、亲疏水性、拉伸强度等进行了表征.测试结果表明,制备的复合支撑层膜的表面的接触角为121°,拉伸强度为11.4 MPa,相比于传统的静电纺丝膜,复合支撑层膜的拉伸强度得到了大幅的提升.采用正渗透测试系统对FO膜的分离性能进行测试发现,在PRO模式下,以1 mol·L~(-1)NaCl作为汲取液,去离子水作为供给液时,纯水通量达到25.8 LMH,反向盐通量为4.5 g MH.  相似文献   

3.
当利用纳滤膜处理高浓度工业废液时,实验研究表明随着浓缩时间的延长,渗透液通量衰减系数和膜污染阻力提高很快;浓缩时间较短时,纳滤膜的分离过程由浓差极化控制;浓缩时间较长时,纳滤膜分离过程由浓差极化和膜污染共同控制;提高卷式纳滤膜浓缩液流量会增加纳滤膜浓差极化与膜污染的影响,板式纳滤膜恰与此相反;原浓度高的母液,其渗透液通量衰减系数和膜污染阻力随浓缩时间的延长其提高速率相对也高。  相似文献   

4.
有机蒙脱石填充PDMS膜分离水相有机物的渗透汽化研究   总被引:7,自引:0,他引:7  
余江  李昊  刘会洲 《环境化学》2005,24(4):397-400
以乙醇、乙酸的水溶液为渗透汽化分离对象,将CTAB柱撑蒙脱石作为填充剂,制备了填充型PDMS(聚二甲基硅氧烷)膜,研究填充膜对乙醇/水及乙酸/水体系的渗透汽化分离,结果表明,蒙脱石的吸附特性及其层间柱撑通道可以明显改善PDMS膜的选择性和通量,填充膜分离乙醇或乙酸的分离效果明显不同,对可能存在的渗透汽化分离机理进行了探讨。  相似文献   

5.
稀土元素在土壤中迁移、转化模型的建立及验证   总被引:6,自引:0,他引:6  
庞欣  王东红  彭安 《环境化学》2002,21(4):329-335
建立了稀土在褐土土壤中迁移、转化模型,定量评价稀土在土壤中的迁移、转化过程。模型包括土壤中稀土化学热力学平衡体系、土壤水分物理形状和土壤剖面的稀土通量。在中国农业大学内进行了田间实验,对模型进行了验证,模拟值与实测值能很好的拟合。  相似文献   

6.
湿地生态系统甲烷排放研究进展   总被引:6,自引:2,他引:6  
宋长春 《生态环境》2004,13(1):69-73
湿地是大气CH4的主要自然来源。天然湿地每年向大气中排放的CH4占全球CH4排放总量的15%~30%。在厌氧环境条件下,CH4通过甲烷产生菌的作用而产生;在氧化条件下,CH4通过土壤中微生物的作用而被氧化和迁移。CH4从土壤中的排放和吸收经过几个生物和物理过程。湿地中CH4通量在时空两个方面都有较大变化,这种在空间上的变化与CH4产生、氧化和迁移过程有关,同时受不同地域的特殊因素如水文状况、植物群落、土壤温度等的影响。湿地水文条件是决定CH4排放的关键控制因子,表层土壤温度与CH4排放通量成正相关关系,土壤中氮含量也对CH4排放通量起作用。环境因子与CH4排放间的交互作用是非常复杂的,与CO2相比,CH4的产生在时空两方面更易于变化。目前关于湿地CH4排放的模型多为一维模型,主要模拟CH4在土壤中的产生过程,以及从上覆土壤、植被和水体进入大气的迁移过程;模型一般涉及不同深度的土壤温度、水位和净初级生产力。  相似文献   

7.
以垃圾渗滤液处理过程中的膜生物反应器(Membrane Bio-Reactor,MBR)出水作为研究对象,采用正渗透膜技术对其进行过滤,对比选择碳酸氢铵和乙二胺四乙酸(Ethylene Diamine Tetraacetic Acid,EDTA)-锌钠两种汲取液中性能较好的进行中试实验。研究了两种汲取液的不同浓度及膜朝向对膜通量的影响,检测了两种汲取液长时间运行所能达到的回收率,分析了两种汲取液的污染物截留率,用斑马鱼胚胎评估了垃圾渗滤液经两种汲取液处理后的生物毒性。结果表明:膜通量随着汲取液浓度增加而增加;在减压渗透(Pressure Reduced Osmosis,PRO)模式下的通量较正渗透(Forward Osmosis,FO)模式高,但污染较严重;碳酸氢铵和EDTA-锌钠在PRO和FO模式下的回收率分别为86.6%、91.6%和66.5%、71.2%;两种汲取液处理后的污染物截留率相差无几,都在98%以上;斑马鱼胚胎暴露于纯水、碳酸氢铵、EDTA钠盐汲取液处理后的水和垃圾渗滤液MBR出水中三天之后存活率为81%、76%、68%和0;实验说明相比于EDTA-锌钠,碳酸氢铵性能较好,适合进行下一步中试试验。  相似文献   

8.
采用超滤膜(UF)为核心,以混凝作为预处理措施,对混凝-超滤工艺处理径流雨水的特性和膜通量变化与污染现象进行了研究,并对聚合硫酸铁(PFS)单独混凝、UF、PFS-UF组合工艺进行了对比;在优化混凝基础上,考察了混凝-UF对常规水质指标及总磷、生物可同化有机碳(AOC)、可生物降解溶解性有机碳(BDOC)等生物稳定性指标的去除效果.结果表明,混凝可有效去除TOC、UV254和总磷,混凝剂投加量与污染物去除近似呈线性关系.各混凝剂除浊效能均良好.综合考虑混凝处理效率与经济性,实验采用混凝方案为10 mg·L-1的PFS.PFS、UF、PFS-UF工艺除浊率均在95%以上,PFS和UF对TOC和UV254的去除较为接近,采用PFS-UF可提高去除率13%—15%;PFS-UF处理后雨水的AOC、BDOC分别降低至61.8μg·L-1、0.19 mg·L-1,残余总磷可降至3.8μg·L-1,雨水生物稳定性明显提高.PFS、UF和PFS-UF对颗粒物的去除率分别达80.5%、99.6%和99.9%.膜通量的变化和SEM图分析表明,混凝在一定程度上减轻了UF膜污染;形成的凝胶层具有一定整体强度,水力清洗时易于清除,膜通量恢复较好;但同时凝胶层的产生也增大了透膜阻力,PFS-UF工艺的周期内膜通量衰减有增加的趋势.  相似文献   

9.
纳滤膜处理工业废液时,纳滤膜系统可以看做一个封闭体系。实验表明透过液通量Jw与压力差呈直线关系;透过液通量Jw与管过液溶质浓度CR都与浓缩时间呈较好的数学关系。但数学关系形式不同;透过液溶质浓度CR与进液溶质浓度Ci呈指数关系;透过液溶质浓度CR与膜压力差△p的关系为指数关系。  相似文献   

10.
季节性干旱现象在我国中亚热带地区时有发生,为了研究该区域大气-生态系统之间的相互作用关系及其碳水收支状况,2002年起在江西省千烟洲(26.7°N,115.1°E)人工林生态系统建立了通量观测塔。2003年7月该人工林生态系统遭遇了历史上少有的高温少雨天气,本研究应用基于生理生态学过程的EALCO(Ecological Assimilation of Land and Climate Observation)模型及2003和2004年通量观测数据对该生态系统的水热通量进行了模拟,同时分析了干旱胁迫对它们产生的影响。结果显示,模型能够很好的模拟该生态系统的能量通量的日变化,净辐射、显热和潜热通量模拟值与实测值相关系数的平方(R2)及标准差分别为0.99和8.05 W.m-2;0.81和41.02 W.m-2;0.90和31.49 W.m-2,模型可以解释87%的日蒸散量的变化。从模拟结果看,2003年7月下旬(发生较严重干旱胁迫)较2004年同期(干旱程度轻)相比,冠层及土壤水势下降约2倍,植物蒸腾的日变化形式改变,根系吸水滞后冠层蒸腾的时间缩短约半小时,冠层导度下降40%~60%。模拟与观测结果均表明,2003年7月下旬每天正午的波文比大都介于1~2.2,而2004年同期正午的波文比则介于0.2~0.6。EALCO模型通过Ball模型将植物碳水过程耦合在一起,从而可以很好的模拟植物的气孔行为,进而准确的模拟植物水热过程对干旱的响应。土壤水分匮乏对冠层导度的限制是2003年干旱期间冠层潜热通量模拟值下降的根本原因。  相似文献   

11.
The UF membrane fouling by down- and up-flow BAC effluents were compared. Up-flow BAC effluent fouled the membrane faster than down-flow BAC effluent. The combined effects dominated irreversible fouling. The extent of fouling exacerbated by inorganic particles was higher. The TMP, permeate flux, and normalized membrane flux during 21 days of UF of DBAC and UBAC effluents. Fouling during ultrafiltration of down- and up-flow biological activated carbon effluents was investigated to determine the roles of polysaccharides, proteins, and inorganic particles in ultrafiltration membrane fouling. During ultrafiltration of down- flow biological activated carbon effluent, the trans-membrane pressure was≤26 kPa and the permeate flux was steady at 46.7 L?m2?h1. However, during ultrafiltration of up-flow biological activated carbon effluent, the highest trans-membrane pressure was almost 40 kPa and the permeate flux continuously decreased to 30 L?m2?h1. At the end of the filtration period, the normalized membrane fluxes were 0.88 and 0.62 for down- and up-flow biological activated carbon effluents, respectively. The membrane removed the turbidity and polysaccharides content by 47.4% and 30.2% in down- flow biological activated effluent and 82.5% and 22.4% in up-flow biological activated carbon effluent, respectively, but retained few proteins. The retention of polysaccharides was higher on the membrane that filtered the down- flow biological activated effluent compared with that on the membrane that filtered the up-flow biological activated carbon effluent. The polysaccharides on the membranes fouled by up-flow biological activated carbon and down- flow biological activated effluents were spread continuously and clustered, respectively. These demonstrated that the up-flow biological activated carbon effluent fouled the membrane faster. Membrane fouling was associated with a portion of the polysaccharides (not the proteins) and inorganic particles in the feed water. When there was little difference in the polysaccharide concentrations between the feed waters, the fouling extent was exacerbated more by inorganic particles than by polysaccharides.  相似文献   

12.
We investigated the fouling performances of ultrafiltration (UF) membrane for treating in-line coagulated water in an enhanced coagulation-UF hybrid process. Then we analyzed the fouling mechanisms in the early stage of UF using mathematical models and microscopy observation methods. Finally, we discussed the impact of aeration on membrane fouling in this paper. The results showed that a two-stage of trans-membrane pressure (TMP) profile during the operation of enhanced coagulation-UF membrane was observed, and the relationship between permeability and operation time fitted well with a logarithmic curve. Membrane pores blocking and cake filtration were confirmed as main membrane fouling mechanisms using the mathematical models. The two stages of membrane fouling mechanisms were further deduced, namely, the membrane pore narrowing followed by the formation of cake layer. Membrane autopsy analysis using scanning electron microscopy (SEM) images of the membrane surface sampled from different filtration cycles also confirmed the mechanisms of pores blocking and cake filtration. Moreover, according to the variations of the permeability and membrane fouling resistance, aeration was able to mitigate and control the membrane fouling to a certain extent, but the optimization of aeration conditions still needs to be studied.  相似文献   

13.
• Ceramic membrane filtration showed high performance for surface water treatment. • PTC pre-coagulation could enhance ceramic membrane filtration performance. • Ceramic membrane fouling was investigated by four varied mathematical models. • PTC pre-coagulation was high-effective for ceramic membrane fouling control. Application of ceramic membrane (CM) with outstanding characteristics, such as high flux and chemical-resistance, is inevitably restricted by membrane fouling. Coagulation was an economical and effective technology for membrane fouling control. This study investigated the filtration performance of ceramic membrane enhanced by the emerging titanium-based coagulant (polytitanium chloride, PTC). Particular attention was paid to the simulation of ceramic membrane fouling using four widely used mathematical models. Results show that filtration of the PTC-coagulated effluent using flat-sheet ceramic membrane achieved the removal of organic matter up to 78.0%. Permeate flux of ceramic membrane filtration reached 600 L/(m2·h), which was 10-fold higher than that observed with conventional polyaluminum chloride (PAC) case. For PTC, fouling of the ceramic membrane was attributed to the formation of cake layer, whereas for PAC, standard filtration/intermediate filtration (blocking of membrane pores) was also a key fouling mechanism. To sum up, cross-flow filtration with flat-sheet ceramic membranes could be significantly enhanced by titanium-based coagulation to produce both high-quality filtrate and high-permeation flux.  相似文献   

14.
• Effects of metabolic uncouplers addition on sludge reduction were carried out. • TCS addition effectively inhibited ATP synthesis and reduced sludge yield. • The effluent quality such as TOC and ammonia deteriorated but not significantly. • Suitable dosage retarded biofouling during sludge water recovery by UF membrane. Energy uncoupling is often used for sludge reduction because it is easy to operate and does not require a significant amount of extra equipments (i.e. no additional tank required). However, over time the supernatant extracted using this method can deteriorate, ultimately requiring further treatment. The purpose of this study was to determine the effect of using a low-pressure ultrafiltration membrane process for sludge water recovery after the sludge had undergone an energy uncoupling treatment (using 3,3′,4′,5-tetrachlorosalicylanilide (TCS)). Energy uncoupling was found to break apart sludge floc by reducing extracellular polymeric substances (EPS) and adenosine triphosphate (ATP) content. Analysis of supernatant indicated that when energy uncoupling and membrane filtration were co-applied and the TCS dosage was below 30 mg/L, there was no significant deterioration in organic component removal. However, ammonia and phosphate concentrations were found to increase as the concentration of TCS added increased. Additionally, due to low sludge concentrations and EPS contents, addition of 30–60 mg/L TCS during sludge reduction increased the permeate flux (two times higher than the control) and decreased the hydraulic reversible and cake layer resistances. In contrast, high dosage of TCS aggravated membrane fouling by forming compact fouling layers. In general, this study found that the co-application of energy uncoupling and membrane filtration processes represents an effective alternative method for simultaneous sludge reduction and sludge supernatant recovery.  相似文献   

15.
The formation of a dynamic membrane (DM) was investigated using polyethylene glycol (PEG) (molecular weight of 35000 g/mol, concentration of 1 g/L). Two natural organic matters (NOM), Dongbok Lake NOM (DLNOM) and Suwannee River NOM (SRNOM) were used in the ultrafiltration experiments along with PEG. To evaluate the effects of the DM with PEG on ultrafiltration, various transport experiments were conducted, and the analyses of the NOM in the membrane feed and permeate were performed using high performance size exclusion chromatography, and the effective pore size distribution (effective PSD) and effective molecular weight cut off (effective MWCO) were determined. The advantages of DM formed with PEG can be summarized as follows: (1) PEG interferes with NOM transmission through the ultrafiltration membrane pores by increasing the retention coefficient of NOM in UF membranes, and (2) low removal of NOM by the DM is affected by external factors, such as pressure increases during UF membrane filtration, which decreases the effective PSD and effective MWCO of UF membranes. However, a disadvantage of the DM with PEG was severe flux decline; thus, one must be mindful of both the positive and negative influences of the DM when optimizing the UF performance of the membrane.  相似文献   

16.
超滤分离、浓缩、脱盐青霉素酰化酶的研究   总被引:2,自引:0,他引:2  
本文用中空纤维超滤膜对青霉素酰化酶进行了分离、浓缩的研究、实验了不同种类的膜、不同的酶活浓度、不同运行时间和不同压力等因素对膜透水量、截留率和酶的回收率的影响。结果表明:采用超滤技术分离、浓缩、脱盐青霉素酰化酶工艺,具有操作简单,酶的比活高,回收率高和省能等特点,适用于工业化生产。  相似文献   

17.
• Bacteria could easily and quickly attached onto TEP to form protobiofilms. • TEP-protobiofilm facilitate the transport of bacteria to membrane surface. • More significant flux decline was observed in the presence of TEP-protobiofilms. • Membrane fouling shows higher sensitivity to protobiofilm not to bacteria level. Transparent exopolymer particles (TEPs) are a class of transparent gel-like polysaccharides, which have been widely detected in almost every kind of feed water to membrane systems, including freshwater, seawater and wastewater. Although TEP have been thought to be related to the membrane fouling, little information is currently available for their influential mechanisms and the pertinence to biofouling development. The present study, thus, aims to explore the impact of TEPs on biofouling development during ultrafiltration. TEP samples were inoculated with bacteria for several hours before filtration and the formation of “protobiofilm” (pre-colonized TEP by bacteria) was examined and its influence on biofouling was determined. It was observed that the bacteria can easily and quickly attach onto TEPs and form protobiofilms. Ultrafiltration experiments further revealed that TEP-protobiofilms served as carriers which facilitated and accelerated transport of bacteria to membrane surface, leading to rapid development of biofouling on the ultrafiltration membrane surfaces. Moreover, compared to the feed water containing independent bacteria and TEPs, more flux decline was observed with TEP-protobiofilms. Consequently, it appeared from this study that TEP-protobiofilms play a vital role in the development of membrane biofouling, but unfortunately, this phenomenon has been often overlooked in the literature. Obviously, these findings in turn may also challenge the current understanding of organic fouling and biofouling as membrane fouling caused by TEP-protobiofilm is a combination of both. It is expected that this study might promote further research in general membrane fouling mechanisms and the development of an effective mitigation strategy.  相似文献   

18.
• A stable and electroconductive CNTs/ceramic membrane was fabricated. • The membrane with the electro-assistance exhibited optimal fouling mitigation. • The removal efficiency was improved by the -2.0 V electro-assistance. • Electro-assisted filtration is energy-saving than that of commercial membrane. Ultrafiltration is employed as an important process for water treatment and reuse, which is of great significance to alleviate the shortage of water resources. However, it suffers from severe membrane fouling and the trade-off between selectivity and permeability. In this work, a CNTs/ceramic flat sheet ultrafiltration membrane coupled with electro-assistance was developed for improving the antifouling and separation performance. The CNTs/ceramic flat sheet membrane was fabricated by coating cross-linked CNTs on ceramic membrane, featuring a good electroconductivity of 764.75 S/m. In the filtration of natural water, the permeate flux of the membrane with the cell voltage of -2.0 V was 1.8 times higher than that of the membrane without electro-assistance and 5.7-fold greater than that of the PVDF commercial membrane. Benefiting from the electro-assistance, the removal efficiency of the typical antibiotics was improved by 50%. Furthermore, the electro-assisted membrane filtration process showed 70% reduction in energy consumption compared with the filtration process of the commercial membrane. This work offers a feasible approach for membrane fouling mitigation and effluent quality improvement and suggests that the electro-assisted CNTs/ceramic membrane filtration process has great potential in the application of water treatment.  相似文献   

19.
In this work we address the role of turbulence on mixing of clear layer of fluid with sediment-laden layer of fluid at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the sediment-laden layer, or alternatively, as the transport of sediment into the top sediment-free flow. This process is governed by four parameters—Reynolds number of the flow \(Re_\tau\), non-dimensional settling velocity of the sediment (proxy for sediment size) \(\tilde{V}\), Richardson number \(Ri_\tau\) and Schmidt number Sc. For this work we have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. In the simple model considered here, the flow’s momentum and turbulence pre-exists over the entire layer of fluid, while the sediment is initially confined to a layer close to the bed. Mixing of sediment-free fluid with the sediment-laden layer is associated primarily with upward transport of sediment and buoyancy. There is no simultaneous upward transport of fluid momentum and turbulence into the sediment-free fluid layer, which is already in motion and turbulent. The analysis performed shows that the ability of the flow to transport a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are transported across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. This behavior of the flow is not seen for larger particles. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the time evolution of the center of mass of the sediment-laden layer and the vertical location of the sediment-free/sediment-laden interface.  相似文献   

20.
The evolution of activated sludge settleability and its relationship to membrane fouling in a submerged membrane bioreactor were studied at a lab-scale equipment fed with synthetic wastewater. It was found that sludge volume index (SVI) gradually increased and the sludge settleability was reduced, which was caused by the propagation of filamentous bacteria. With increasing SVI, the average increasing rate of trans-membrane pressure increased, the stable filtration period was shortened, and the two stages (smooth stage and accelerating stage) of the trans-membrane pressure were more obvious. At the same time, the increasing rate of trans-membrane pressure at the smooth stage decreased and the rate at the accelerating stage increased with SVI, respectively. The observation by using scanning electronic microscopes showed the cake layer with loose structure and large thickness formed on the membrane surface due to the appearance of filamentous bacteria and high SVI in sludge. Influence of the sludge settleability on the trans-membrane pressure was related to the structure and thickness of the cake layer on the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号