首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tingstad, Abbie H. and Glen M. MacDonald, 2010. Long-Term Relationships Between Ocean Variability and Water Resources in Northeastern Utah. Journal of the American Water Resources Association (JAWRA) 46(5):987-1002. DOI: 10.1111/j.1752-1688.2010.00471.x Abstract: The Uinta Mountains in the northwestern Colorado River Basin are an important source of water for Utah and the western United States. This article examines 20th Century hydrology in the Uinta Mountains region in the context of the previous four to eight centuries as well as possible relationships with Pacific and Atlantic Ocean variability using new tree-ring based reconstructions for streamflow and snowpack. The 20th Century appears to have been unusually wet compared with previous centuries. Relationships between hydrology in the region and the El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) are largely insignificant in instrumental datasets but may have been stronger, although inconsistent, over the longer time spans represented by the paleoclimate records. Impacts of individual modes of sea surface temperature variability may sometimes be enhanced by periods when climate forcing by ENSO, PDO, and/or AMO coincide. Such episodes are associated with deviations from mean hydrology as high as +14% and as low as −18%. The 20th Century could be a misleading benchmark to base water resource estimates upon and flexible water management strategies are necessary to take into account the large range of natural variability observed in the longer-term hydroclimatology as well as the challenges to predictability due to the apparently complex and inconsistent influence of ocean-driven variability.  相似文献   

2.
Abstract:  Water‐resource managers need to forecast streamflow in the Lower Colorado River Basin to plan for water‐resource projects and to operate reservoirs for water supply. Statistical forecasts of streamflow based on historical records of streamflow can be useful, but statistical assumptions, such as stationarity of flows, need to be evaluated. This study evaluated the relation between climatic fluctuations and stationarity and developed regression equations to forecast streamflow by using climatic fluctuations as explanatory variables. Climatic fluctuations were represented by the Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), and Southern Oscillation Index (SOI). Historical streamflow within the 25‐ to 30‐year positive or negative phases of AMO or PDO was generally stationary. Monotonic trends in annual mean flows were tested at the 21 sites evaluated in this study; 76% of the sites had no significant trends within phases of AMO and 86% of the sites had no significant trends within phases of PDO. As climatic phases shifted in signs, however, many sites had nonstationary flows; 67% of the sites had significant changes in annual mean flow as AMO shifted in signs. The regression equations developed in this study to forecast streamflow incorporate these shifts in climate and streamflow, thus that source of nonstationarity is accounted for. The R2 value of regression equations that forecast individual years of annual flow for the central part of the study area ranged from 0.28 to 0.49 and averaged 0.39. AMO was the most significant variable, and a combination of indices from both the Atlantic and Pacific Oceans explained much more variation in flows than only the Pacific Ocean indices. The average R2 value for equations with PDO and SOI was 0.15.  相似文献   

3.
ABSTRACT: The value of using climate indices such as ENSO or PDO in water resources predictions is dependent on understanding the local relationship between these indices and streamflow over time. This study identifies long term seasonal and spatial variations in the strength of El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) correlations with timing and magnitude of discharge in snowmelt streams in Oregon. ENSO is best correlated with variability in annual discharge, and PDO is best correlated with spring snowmelt timing and magnitude and timing of annual floods. Streams in the Cascades and Wallowa mountains show the strongest correlations, while the southernmost stream is not correlated with ENSO or PDO. ENSO correlations are weaker from 1920 to 1950 and vary significantly depending on whether Southern Oscillation Index (SOI) or Niño 3.4 is used. PDO correlations are strong from 1920 to 1950 and weak or insignificant other years. Although there are not consistent increasing or decreasing trends in annual discharge or spring snowmelt timing, there are significant increases in fractional winter runoff that are independent of precipitation, PDO, or ENSO and may indicate monotonic winter warming.  相似文献   

4.
Abstract: The relations of decadal to multidecadal (D2M) variability in global sea‐surface temperatures (SSTs) with D2M variability in the flow of the Upper Colorado River Basin (UCRB) are examined for the years 1906‐2003. Results indicate that D2M variability of SSTs in the North Atlantic, North Pacific, tropical Pacific, and Indian Oceans is associated with D2M variability of the UCRB. A principal components analysis (with varimax rotation) of detrended and 11‐year smoothed global SSTs indicates that the two leading rotated principal components (RPCs) explain 56% of the variability in the transformed SST data. The first RPC (RPC1) strongly reflects variability associated with the Atlantic Multidecadal Oscillation and the second RPC (RPC2) represents variability of the Pacific Decadal Oscillation, the tropical Pacific Ocean, and Indian Ocean SSTs. Results indicate that SSTs in the North Atlantic Ocean (RPC1) explain as much of the D2M variability in global SSTs as does the combination of Indian and Pacific Ocean variability (RPC2). These results suggest that SSTs in all of the oceans have some relation with flow of the UCRB, but the North Atlantic may have the strongest and most consistent association on D2M time scales. Hydroclimatic persistence on these time scales introduces significant nonstationarity in mean annual streamflow, with critical implications for UCRB water resource management.  相似文献   

5.
ABSTRACT: Climate data from the Malcolm Knapp Research Forest (MKRF) in the Coast Range mountains of southwestern British Columbia were used to examine relationships between climate and hydrology and variations in the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Air and water temperatures were higher and precipitation was lower during in‐phase or warm PDO/E1 Niño events than in other years. In contrast, in‐phase or cool PDO/La Niña years were generally cooler and wetter than other years. Precipitation and East Creek discharge were positively related to the Southern Oscillation Index (SOI) and negatively related to the PDO index. Conversely, air and water temperatures were negatively related to the SOI and positively related to the PDO index. Differences in precipitation and air temperature were also evident at longer time scales when separated by PDO phase. Because of drier conditions during in‐phase El Niño events, the flow of organic matter from East Creek to downstream portions of the channel network was lower compared to other years. This reduction has implications for downstream communities, as these subsidies provide a major source of energy for stream food webs. Therefore, short term and long term shifts in climate, discharge, and water temperature may have profound impacts on the ecology of Pacific Northwest (PNW) watersheds due to changes in a number of ecosystem processes such as altered flux of organic matter from headwater streams to larger rivers.  相似文献   

6.
Coastal ecosystems are dependent on terrestrial freshwater export which is affected by both climate trends and natural climate variability. However, the relative role of these factors is not clear. Here, both climate trends and internal climate variabilities at different time scales are related to variations in terrestrial freshwater export into the eastern United States (U.S.) coastal region. For the recent 35‐year period, the intensified hydro‐meteorological processes (annual precipitation or evapotranspiration) may explain the observed streamflow variability in the northeast. However, in the southeast, streamflow is positively correlated with climate variability induced by the Pacific Ocean conditions (El Nino‐Southern Oscillation [ENSO] and Pacific Decadal Oscillation) rather than Atlantic Ocean conditions (Atlantic Multi‐decadal Oscillation and North Atlantic Oscillation). The centroid location for volume of terrestrial freshwater export integrated along the eastern U.S. has a positive temporal trend and is negatively correlated with ENSO conditions, suggesting the northward trend in freshwater export to U.S. eastern coast may be disturbed by the natural climate variability, especially ENSO conditions, i.e., the center of freshwater mass moves southward (northward) during El Nino (La Nina) years. The results indicate the spatial and temporal variations in freshwater export from the eastern U.S. are affected by both climate change and inter‐annual climate variability during the recent 35‐year period (1980‐2014).  相似文献   

7.
We analyzed annual peak flow series from 127 naturally flowing or naturalized streamflow gauges across western Canada to examine the impact of the Pacific Decadal Oscillation (PDO) on annual flood risk, which has been previously unexamined in detail. Using Spearman's rank correlation ρ and permutation tests on quantile‐quantile plots, we show that higher magnitude floods are more likely during the negative phase of the PDO than during the positive phase (shown at 38% of the stations by Spearman's rank correlations and at 51% of the stations according to the permutation tests). Flood frequency analysis (FFA) stratified according to PDO phase suggests that higher magnitude floods may also occur more frequently during the negative PDO phase than during the positive phase. Our results hold throughout much of this region, with the upper Fraser River Basin, the Columbia River Basin, and the North Saskatchewan River Basin particularly subject to this effect. Our results add to other researchers' work questioning the wholesale validity of the key assumption in FFA that the annual peak flow series at a site is independently and identically distributed. Hence, knowledge of large‐scale climate state should be considered prior to the design and construction of infrastructure.  相似文献   

8.
Model estimated monthly water balance (WB) components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff [R]) for 848 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Mississippi River Basin (MRB) are used to examine the temporal and spatial variability of the MRB WB for water years 1901 through 2014. Results indicate the MRB can be divided into nine subregions with similar temporal variability in R. The WB analyses indicated ~79% of total water‐year MRB runoff is generated by four of the nine subregions and most of the R in the basin is derived from surplus (S) water during the months of December through May. Furthermore, the analyses showed temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the western U.S. and positive atmospheric pressure anomalies over the eastern U.S. coast. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the Gulf of Mexico into the MRB. In the context of paleo‐climate reconstructions of the Palmer Drought Severity Index, since about 1900 the MRB has experienced wetter conditions than were experienced during the previous 500 years.  相似文献   

9.
ABSTRACT: A network of 32 drought sensitive tree‐ring chronologies is used to reconstruct mean water year flow on the Columbia River at The Dalles, Oregon, since 1750. The reconstruction explains 30 percent of the variability in mean water year (October to September) flow, with a large portion of unexplained variance caused by underestimates of the most severe low flow events. Residual statistics from the tree‐ring reconstruction, as well as an identically specified instrumental reconstruction, exhibit positive trends over time. This finding suggests that the relationship between drought and streamflow has changed over time, supporting results from hydrologic models, which suggest that changes in land cover over the 20th Century have had measurable impacts on runoff production. Low pass filtering the flow record suggests that persistent low flows during the 1840s were probably the most severe of the past 250 years, but that flows during the 1930s were nearly as extreme. The period from 1950 to 1987 is anomalous in the context of this record for having no notable multiyear drought events. A comparison of the flow reconstruction to paleorecords of the Pacific Decadal Oscillation (PDO) and El Nino/Southern Oscillation (ENSO) support a strong 20th Century link between large scale circulation and streamflow, but suggests that this link is very weak prior to 1900.  相似文献   

10.
Abstract: Since the 1940s, snow water equivalent (SWE) has decreased throughout the Pacific Northwest, while water use has increased. Climate has been proposed as the primary cause of base‐flow decline in the Scott River, an important coho salmon rearing tributary in the Klamath Basin. We took a comparative‐basin approach to estimating the relative contributions of climatic and non‐climatic factors to this decline. We used permutation tests to compare discharge in 5 streams and 16 snow courses between “historic” (1942‐1976) and “modern” (1977‐2005) time periods, defined by cool and warm phases, respectively, of the Pacific Decadal Oscillation. April 1 SWE decreased significantly at most snow courses lower than 1,800 m in elevation and increased slightly at higher elevations. Correspondingly, base flow decreased significantly in the two streams with the lowest latitude‐adjusted elevation and increased slightly in two higher‐elevation streams. Base‐flow decline in the Scott River, the only study stream heavily utilized for irrigation, was larger than that in all other streams and larger than predicted by elevation. Based on comparison with a neighboring stream draining wilderness, we estimate that 39% of the observed 10 Mm3 decline in July 1‐October 22 discharge in the Scott River is explained by regional‐scale climatic factors. The remainder of the decline is attributable to local factors, which include an increase in irrigation withdrawal from 48 to 103 Mm3/year since the 1950s.  相似文献   

11.
ABSTRACT: Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara‐Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate‐driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM‐RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM‐RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions.  相似文献   

12.
Model‐estimated monthly water balance components (i.e., potential evapotranspiration, actual evapotranspiration, and runoff (R)) for 146 United States (U.S.) Geological Survey 8‐digit hydrologic units located in the Colorado River Basin (CRB) are used to examine the temporal and spatial variability of the CRB water balance for water years 1901 through 2014 (a water year is the period from October 1 of one year through September 30 of the following year). Results indicate that the CRB can be divided into six subregions with similar temporal variability in monthly R. The water balance analyses indicated that approximately 75% of total water‐year R is generated by just one CRB subregion and that most of the R in the basin is derived from surplus (S) water generated during the months of October through April. Furthermore, the analyses show that temporal variability in S is largely controlled by the occurrence of negative atmospheric pressure anomalies over the northwestern conterminous U.S. (CONUS) and positive atmospheric pressure anomalies over the southeastern CONUS. This combination of atmospheric pressure anomalies results in an anomalous flow of moist air from the North Pacific Ocean into the CRB, particularly the Upper CRB. Additionally, the occurrence of extreme dry and wet periods in the CRB appears to be related to variability of the Atlantic Multidecadal Oscillation and the Pacific Decadal Oscillation.  相似文献   

13.
This study simulated crop and water yields in the Missouri River Basin (MRB; 1,371,000 km2), one of the largest river basins in the United States, using the Soil and Water Assessment Tool (SWAT) at a fine resolution of 12‐digit Hydrological Unit Codes (HUCs) using the regionalization calibration approach. Very few studies have simulated the entire MRB, and those that have developed were at a coarser resolution of 8‐digit HUCs and were minimally calibrated. The MRB was first divided into three subbasins and was further divided into eleven regions. A “head watershed” was selected in each region and was calibrated for crop and water yields. The parameters from the calibrated head watershed were extrapolated to other subwatersheds in the region to complete comprehensive spatial calibration. The simulated crop yields at the head watersheds were in close agreement with observed crop yields. Spatial validation of the aggregated crop yields resulted in reasonable predictions for all crops except dryland corn in a few regions. Simulated and observed water yields in head watersheds and also in the validation locations were in close agreement in naturalized streams and poor agreement in streams with high groundwater‐surface water interactions and/or reservoirs found upstream of the gauges. Overall, the SWAT model was able to reasonably capture the hydrological and crop growth dynamics occurring in the basin despite some limitations.  相似文献   

14.
The southern interior ecoprovince (SIE) of British Columbia, Canada represents the northernmost extent of the great western North American deserts, it is experiencing some of the nation's fastest economic and population growth making it one of Canada's most water‐stressed regions, and it includes two headwater basins of the transboundary (Canada‐US) Columbia River. Statistical trend analyses were performed on 90‐year regional indicator time series for annual conditions in observed temperature, precipitation, and streamflow reflecting the three major SIE river basins: the Thompson, and transboundary Okanagan and Similkameen. Results suggest that regional climate has grown warmer and wetter, but with little net impact on total water supply availability. The outcome might reflect mutual cancellation of increases in precipitation inputs vs. evapotranspiration losses. Conclusions appeared largely insensitive to low‐pass data filtering, Pacific Decadal Oscillation effects, or solar output variability. Ensemble historical global climate model runs over the same time interval support this absence of appreciable trend in regionally integrated annual runoff volume, but a possible mismatch in precipitation results suggests a direction for further study. Overall, while important changes in hydrologic timing and extremes are likely occurring here, there is limited evidence for a net change in overall water supply availability over the last century.  相似文献   

15.
ABSTRACT: This paper considers the distribution of flood flows in the Upper Mississippi, Lower Missouri, and Illinois Rivers and their relationship to climatic indices. Global climate patterns including El Niño/Southern Oscillation, the Pacific Decadal Oscillation, and the North Atlantic Oscillation explained very little of the variations in flow peaks. However, large and statistically significant upward trends were found in many gauge records along the Upper Mississippi and Missouri Rivers: at Hermann on the Missouri River above the confluence with the Mississippi (p = 2 percent), at Hannibal on the Mississippi River (p < 0.1 percent), at Meredosia on the Illinois River (p = 0.7 percent), and at St. Louis on the Mississippi below the confluence of all three rivers (p = 1 percent). This challenges the traditional assumption that flood series are independent and identically distributed random variables and suggests that flood risk changes over time.  相似文献   

16.
In water stressed regions, water managers are exploring new horizons that would help in long‐range streamflow forecasts. Oceanic‐atmospheric oscillations have been shown to influence streamflow variability. In this study, long‐lead time streamflow forecasts are made using a multiclass kernel‐based data‐driven support vector machine (SVM) model. The extended streamflow records based on tree ring reconstructions were used to provide a longer time series data. Reconstructed data were used from 1658 to 1952 and the instrumental record was used from 1953 to 2007. Reconstructions for oceanic‐atmospheric oscillations included the El Niño‐Southern Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, and North Atlantic Oscillation. Streamflow forecasts using all four oscillations were made with one‐year to five‐year lead times for 21 gages in the western United States. This is the first study that uses both instrumental and reconstructed data of oscillations in SVM model to improve streamflow forecast lead time. SVM model was able to provide “satisfactory” to “very good” forecasts with one‐ to five‐year lead time for the selected gages. The use of all the oscillation indices helped in achieving better predictability compared to using individual oscillations. The SVM modeling results are better when compared with multiple linear regression model forecasts. The findings are statistical in nature and are expected to be useful for long‐term water resources planning and management.  相似文献   

17.
As a key component of the National Flood Interoperability Experiment (NFIE), this article presents the continental scale river flow modeling of the Mississippi River Basin (MRB), using high‐resolution river data from NHDPlus. The Routing Application for Parallel computatIon of Discharge (RAPID) was applied to the MRB with more than 1.2 million river reaches for a 10‐year study (2005‐2014). Runoff data from the Variable Infiltration Capacity (VIC) model was used as input to RAPID. This article investigates the effect of topography on RAPID performance, the differences between the VIC‐RAPID streamflow simulations in the HUC‐2 regions of the MRB, and the impact of major dams on the streamflow simulations. The model performance improved when initial parameter values, especially the Muskingum K parameter, were estimated by taking topography into account. The statistical summary indicates the RAPID model performs better in the Ohio and Tennessee Regions and the Upper and Lower Mississippi River Regions in comparison to the western part of the MRB, due to the better performance of the VIC model. The model accuracy also increases when lakes and reservoirs are considered in the modeling framework. In general, results show the VIC‐RAPID streamflow simulation is satisfactory at the continental scale of the MRB.  相似文献   

18.
In the Mississippi River Basin (MRB), practices that enhance drainage (e.g., channelization, tile drainage) are necessary management tools in order to maintain optimal agricultural production in modern farming systems. However, these practices facilitate, and may speed the delivery of excess nutrients and sediments to downstream water bodies via agricultural streams and ditches. These nonpoint sources contribute to elevated nutrient loading in the Gulf of Mexico, which has been linked to widespread hypoxia and associated ecological and economic problems. Research suggests agricultural drainage ditches are important links between farm fields and downstream ecosystems, and application of new management practices may play an important role in the mitigation of water quality impairments from agricultural watersheds. In this article, we describe how researchers and producers in the MRB are implementing and validating novel best management practices (BMPs) that if used in tandem could provide producers with continued cropping success combined with improved environmental protection. We discuss three BMPs — low‐grade weirs, slotted inlet pipes, and the two‐stage ditch. While these new BMPs have improved the quality of water leaving agricultural landscapes, they have been validated solely in isolation, at opposite ends of the MRB. These BMPs have similar function and would greatly benefit from stacked incorporation across the MRB to the benefit of the basin as a whole.  相似文献   

19.
Abstract: Repeated severe droughts over the last decade in the South Atlantic have raised concern that streamflow may be systematically decreasing, possibly due to climate variability. We examined the monthly and annual trends of streamflow, precipitation, and temperature in the South Atlantic for the time periods: 1934‐2005, 1934‐1969, and 1970‐2005. Streamflow and climate (temperature and precipitation) trends transitioned ca. 1970. From 1934 to 1969, streamflow and precipitation increased in southern regions and decreased in northern regions; temperature decreased throughout the South Atlantic. From 1970 to 2005, streamflow decreased, precipitation decreased, and temperature increased throughout the South Atlantic. It is unclear whether these will be continuing trends or simply part of a long‐term climatic oscillation. Whether these streamflow trends have been driven by climatic or anthropogenic changes, water resources management faces challenging prospects to adapt to decadal‐scale persistently wet and dry hydrologic conditions.  相似文献   

20.
The aim of this study is to identify temporal and spatial variability patterns of annual and seasonal rainfall in Mexico. A set of 769 weather stations located in Mexico was examined. The country was divided into 12 homogeneous rainfall regions via principal component analysis. A Pettitt test was conducted to perform a homogeneity analysis for detecting abrupt changes in mean rainfall levels, and a Mann‐Kendall test was conducted to examine the presence of monotonically increasing/decreasing patterns in the data. In total, 14.4% of the annual series was deemed nonstationary. Fourteen percent of the samples were nonstationary in the winter and summer, and 9% were nonstationary in the spring and autumn. According to the results, the nonstationarity of some seasonal rainfall series may be associated with the presence of atmospheric phenomena (e.g., El Niño/Southern Oscillation, Pacific Decadal Oscillation, Atlantic Multidecadal Oscillation, and North Atlantic Oscillation). A rainfall frequency analysis was performed for the nonstationary annual series, and significant differences in the return levels can be expected for the scenarios analyzed. The identification of areas that are more susceptible to changes in rainfall levels will improve water resource management plans in the country, and it is expected that these plans will take into account nonstationary theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号