首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the effect of instream large wood on denitrification capacity in two contrasting, lower order streams — one that drains an agricultural watershed with no riparian forest and minimal stores of instream large wood and another that drains a forested watershed with an extensive riparian forest and abundant instream large wood. We incubated two types of wood substrates (fresh wood blocks and extant streambed wood) and an artificial stone substrate for nine weeks in each stream. After in situ incubation, we collected the substrates and their attached biofilms and established laboratory‐based mesocosm assays with stream water amended with 15N‐labeled nitrate‐N. Wood substrates at the forested site had significantly higher denitrification than wood substrates from the agricultural site and artificial stone substrates from either site. Nitrate‐N removal rates were markedly higher on woody substrates compared to artificial stones at both sites. Nitrate‐N removal rates were significantly correlated with biofilm biomass. Denitrification capacity accounted for only a portion of nitrate‐N removal observed within the mesocosms in both the wood controls and instream substrates. N2 accounted for 99.7% of total denitrification. Restoration practices that generate large wood in streams should be encouraged for N removal and do not appear to generate high risks of instream N2O generation.  相似文献   

2.
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies.  相似文献   

3.
In urban watersheds, stormwater inputs largely bypass the buffering capacity of riparian zones through direct inputs of drainage pipes and lowered groundwater tables. However, vegetation near the stream can still influence instream nutrient transformations via maintenance of streambank stability, input of woody debris, modulation of organic matter sources, and temperature regulation. Stream restoration seeks to mimic many of these functions by engineering channel complexity, grading stream banks to reconnect incised channels, and replanting lost riparian vegetation. The goal of this study was to quantify these effects by measuring nitrate and phosphate uptake in five restored streams in Charlotte and Raleigh, North Carolina, with a range of restoration ages. Using nutrient spiraling methods, uptake velocity of nitrate (0.02‐3.56 mm/min) and phosphate (0.14‐19.1 mm/min) was similar to other urban restored streams and higher than unimpacted forested streams with variability influenced by restoration age and geomorphology. Using a multiple linear regression approach, reach‐scale phosphate uptake was greater in newly restored sites, which was attributed to assimilation by algal biofilms, whereas nitrate uptake was highest in older sites potentially due to greater channel stability and establishment of microbial communities. The patterns we observed highlight the influence of riparian vegetation on energy inputs (e.g., heat, organic matter) and thereby on nutrient retention.  相似文献   

4.
Abstract: We examine the potential for nutrient limitation of algal periphyton biomass in blackwater streams draining the Georgia coastal plain. Previous studies have investigated nutrient limitation of planktonic algae in large blackwater rivers, but virtually no scientific information exists regarding how algal periphyton respond to nutrients under different light conditions in smaller, low‐flow streams. We used a modification of the Matlock periphytometer (nutrient‐diffusing substrata) to determine if algal growth was nutrient limited and/or light limited at nine sites spanning a range of human impacts from relatively undisturbed forested basins to highly disturbed agricultural sites. We employed four treatments in both shaded and sunny conditions at each site: (1) control, (2) N (NO3‐N), (3) P (PO4‐P), and (4) N + P (NO3‐N + PO4‐P). Chlorophyll a response was measured on 10 replicate substrates per treatment, after 15 days of in situ exposure. Chlorophyll a values did not approach what have been defined as nuisance levels (i.e., 100‐200 mg/m2), even in response to nutrient enrichment in sunny conditions. For Georgia coastal plain streams, algal periphyton growth appears to be primarily light limited and can be secondarily nutrient limited (most commonly by P or N + P combined) in light gaps and/or open areas receiving sunlight.  相似文献   

5.
Little is known about the impact of agricultural legacy on subsurface biogeochemical processes in the years following restoration of riparian wetlands (WLs). More knowledge is also needed on the relative importance of seasons, precipitation events, and inputs of water and nutrients driving nitrogen (N), phosphorus (P), sulfur (S), and greenhouse gas (GHG) (N2O, CO2, CH4) dynamics in these systems. This investigation of a riparian zone comprising a restored WL area and a nonrestored well‐drained alluvium (AL) area in the United States Midwest revealed that despite successful hydrological restoration a decade earlier, biogeochemical conditions in the WL area remained less anoxic than in natural WLs, and not significantly different from those in the AL area. No significant differences in N, P, S, and C compound concentrations or fluxes were observed between the AL and WL areas. Over the duration of the study, nitrate (NO3?) and soluble reactive phosphorus appeared to be primarily driven by hillslope contributions. Ammonium (NH4+), sulfate (SO42?), and CO2 responded strongly to seasonal changes in biogeochemical conditions in the riparian zone, while N2O and CH4 fluxes were most influenced by large rewetting events. Overall, our results challenge overly simplistic assumptions derived from direct interpretation of redox thermodynamics, and show complex patterns of solutes and GHGs at the riparian zone scale.  相似文献   

6.
ABSTRACT: During an autumn runoff event we sampled 48 streams with predominantly forested watersheds and igneous bedrock in the Oregon Coast Range. The streams had acid neutralizing capacities (ANC) > 90 μeq/L and pH > 6.4. Streamwater Na +, Ca2 +, and Mg2 + concentrations were greater than K + concentrations. Anion concentrations generally followed the order of Cl- > NO3- > SO42-. Chloride and Na + concentrations were highest in samples collected in streams near the Pacific Ocean and decreased markedly as distance from the coast increased. Sea salt exerted no discernible influence on stream water acid-base status during the sampling period. Nitrate concentrations in the study streams were remarkably variable, ranging from below detection to 172 μeq/L. We hypothesize that forest vegetation is the primary control of spatial variability of the NO3- concentrations in Oregon Coast Range streams. We believe that symbiotic N fixation by red alder in pure or mixed stands is the primary source of N to forested watersheds in the Oregon Coast Range.  相似文献   

7.
ABSTRACT: A study of stream base flow and NO3‐N concentration was conducted simultaneously in 51 subwatersheds within the 116‐square‐kilometer watershed of East Mahantango Creek near Klingerstown, Pennsylvania. The study was designed to test whether measurable results of processes and observations within the smaller watersheds were similar to or transferable to a larger scale. Ancillary data on land use were available for the small and large watersheds. Although the source of land‐use data was different for the small and large watersheds, comparisons showed that the differences in the two land‐use data sources were minimal. A land use‐based water‐quality model developed for the small‐scale 7.3‐square‐kilometer watershed for a previous study accurately predicted NO3‐N concentrations from sampling in the same watershed. The water‐quality model was modified and, using the imagery‐based land use, was found to accurately predict NO3‐N concentrations in the subwatersheds of the large‐scale 116‐square‐kilometer watershed as well. Because the model accurately predicts NO3‐N concentrations at small and large scales, it is likely that in second‐order streams and higher, discharge of water and NO3‐N is dominated by flow from smaller first‐order streams, and the contribution of ground‐water discharge to higher order streams is minimal at the large scale.  相似文献   

8.
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities.  相似文献   

9.
Watson, Tara K., Dorothy Q. Kellogg, Kelly Addy, Arthur J. Gold, Mark H. Stolt, Sean W. Donohue, and Peter M. Groffman, 2010. Groundwater Denitrification Capacity of Riparian Zones in Suburban and Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 46(2):237-245. DOI: 10.1111/j.1752-1688.2010.00418.x Abstract: We evaluated the relationship of dominant watershed land use to the structure and nitrogen (N) sink function of riparian zones. We focused on groundwater denitrification capacity, water table dynamics, and the presence and pattern of organically enriched deposits. We used the push-pull method (measurement of 15N-enriched denitrification gases derived from an introduced groundwater plume of 15N-enriched nitrate) to evaluate groundwater denitrification capacity on nine forested wetland riparian sites developed in alluvial or outwash parent materials in southern New England. Three replicate sites were located in each of the three watershed types, those with substantial (1) irrigated agriculture, (2) suburban development, and (3) forest. Soil morphology and water table dynamics were assessed at each site. We found significantly lower mean annual water tables at sites within watersheds with substantial irrigated agriculture or suburban development than forested watersheds. Water table dynamics were more variable at sites within suburban watersheds, especially during the summer. Groundwater denitrification capacity was significantly greater at sites within forested watersheds than in watersheds with substantial irrigated agriculture. Because of the high degree of variability observed in riparian sites within suburban watersheds, groundwater denitrification capacity was not significantly different from either forested or agricultural watersheds. The highly variable patterns of organically enriched deposits and water tables at sites within suburban watersheds suggests that depositional events are irregular, limiting the predictability of groundwater N dynamics in these riparian zones. The variability of riparian N removal in watersheds with extensive suburbia or irrigated agriculture argues for N management strategies emphasizing effective N source controls in these settings.  相似文献   

10.
Abstract: The joint influences of riparian vegetation and urbanization on fish assemblages were analyzed by depletion sampling in paired forested and nonforested reaches of 25 small streams along an urbanization gradient. Nonforested reaches were narrower than their forested counterparts, so densities based on surface area differ from linear densities (based on reach length). Linear densities (based on number or biomass of fish) of American eel, white sucker and tesselated darter, and the proportion of biomass of benthic invertivores were significantly higher in nonforested reaches, while linear densities of margined madtom and the number of pool species were significantly higher in forested reaches. Observed riparian effects may reflect differences in habitat and algal productivity between forested and nonforested reaches. These results suggest that relatively small‐scale riparian restoration projects can affect local geomorphology and the abundance of fish. Dense vegetative cover in riparian zones and similar or analogous habitats in both forested and nonforested reaches, the relatively small scale of the nonforested reaches, and the low statistical power to detect differences in abundance of rare species may have limited the observed differences between forested and nonforested reaches. There was a strong urbanization gradient, with reductions of intolerant species and increases of tolerant species and omnivores with increasing urbanization. Interactions between riparian vegetation type and urbanization were found for blacknose dace, creek chub, tesselated darter, and the proportion of biomass of lithophilic spawners. The study did not provide consistent support for the hypotheses that responses of fish to riparian vegetation would be overwhelmed by urban degradation or insignificant at low urbanization.  相似文献   

11.
The effects of livestock grazing on selected riparian and stream attributes, water chemistry, and algal biomass were investigated over a two-year period using livestock enclosures and by completing stream surveys in the Cypress Hills grassland plateau, Alberta, Canada. Livestock enclosure experiments, partially replicated in three streams, comprised four treatments: (1) early season livestock grazing (June–August), (2) late season livestock grazing (August–September), (3) all season grazing (June–September), and (4) livestock absent controls. Livestock grazing significantly decreased streambank stability, biomass of riparian vegetation, and the extent to which aquatic vegetation covered the stream channels compared with livestock-absent controls. Water quality comparisons indicated significant differences among the four livestock grazing treatments in Battle and Graburn creeks but not in Nine Mile Creek. In Graburn Creek, the concentration of total phosphorus in the all-season livestock grazing treatment was significantly higher than that in the livestock-absent control, and the early season and late season grazing treatments. Concentrations of soluble reactive phosphorus in the all-season livestock grazing treatment also exceeded that in livestock-absent control. In contrast, differences in water quality variables in the remaining 22 comparisons (i.e., 22 of the total 24 comparisons) were minor even when differences were statistically significant. Effects of livestock grazing on algal biomass were variable, and there was no consistent pattern among creeks. At the watershed scale, spatial variation in algal biomass was related (P < 0.05) with concentrations of NO2 ? + NO3 ? and soluble reactive phosphorus in two of the four study creeks. Nutrient diffusing substrata experiments showed that algal communities were either nitrogen-limited or not limited by nutrients, depending on stream and season.  相似文献   

12.
Lapwai Creek, an agriculturally impacted stream in northern Idaho, was examined to determine longitudinal patterns of particulate allochthonous input from different riparian vegetation types. The stream, characterized by extensive removal of mature vegetation, was classified as having four riparian vegetation types: herbaceous, herbaceous-shrub mix, shrubs, and deciduous trees. Litterfall from each vegetation type was measured monthly for two years at eight locations along Lapwai Creek using 0.1-m2 baskets. Litterfall was lowest for herbaceous habitats and highest for deciduous tree habitats. Annual litterfall was low in the headwaters, which flow through an open meadow and deep canyon, and increased from the canyon-floodplain transition downstream to the first fifth-order site. Annual litterfall decreased markedly at the last two fifth-order stream sections. Differences in annual input rates between section 6 and sections 7 and 8, all of which are fifth order, can be attributed to removal of climax riparian vegetation. Estimates of actual and potential annual allochthonous income for each site suggest that current detrital inputs to Lapwai Creek are less than could be achieved if greater quantities of climax vegetation were still present. Lower rates of allochthonous inputs to Lapwai Creek may result in a system with detrital dynamics and macroinvertebrate communities different from that of comparable undisturbed streams of this region.  相似文献   

13.
ABSTRACT: Forest and grass riparian buffers have been shown to be effective best management practices for controlling nonpoint source pollution. However, little research has been conducted on giant cane [Arundinaria gigantea (Walt. Muhl.)], a formerly common bamboo species, native to the lower midwestern and southeastern United States, and its ability to reduce nutrient loads to streams. From May 2002 through May 2003, orthophosphate or dissolved reactive phosphate (DRP) concentrations in ground water were measured at successive distances from the field edge through 12 m of riparian buffers of both giant cane and mixed hardwood forest along three streams draining agricultural land in the Cache River watershed in southern Illinois. Giant cane and mixed hardwood forest did not differ in their DRP sequestration abilities. Ground water DRP concentrations were significantly reduced (14 percent) in the first 1.5 m of the buffers, and there was an overall 28 percent reduction in DRP concentration by 12 m from the field edge. The relatively low DRP reductions compared to other studies could be attributed to high DRP input levels, narrow (12 m) buffer lengths, and/or mature (28 to 48 year old) riparian vegetation.  相似文献   

14.
The effects of livestock grazing on selected riparian and stream attributes, water chemistry, and algal biomass were investigated over a two-year period using livestock enclosures and by completing stream surveys in the Cypress Hills grassland plateau, Alberta, Canada. Livestock enclosure experiments, partially replicated in three streams, comprised four treatments: (1) early season livestock grazing (June–August), (2) late season livestock grazing (August–September), (3) all season grazing (June–September), and (4) livestock absent controls. Livestock grazing significantly decreased streambank stability, biomass of riparian vegetation, and the extent to which aquatic vegetation covered the stream channels compared with livestock-absent controls. Water quality comparisons indicated significant differences among the four livestock grazing treatments in Battle and Graburn creeks but not in Nine Mile Creek. In Graburn Creek, the concentration of total phosphorus in the all-season livestock grazing treatment was significantly higher than that in the livestock-absent control, and the early season and late season grazing treatments. Concentrations of soluble reactive phosphorus in the all-season livestock grazing treatment also exceeded that in livestock-absent control. In contrast, differences in water quality variables in the remaining 22 comparisons (i.e., 22 of the total 24 comparisons) were minor even when differences were statistically significant. Effects of livestock grazing on algal biomass were variable, and there was no consistent pattern among creeks. At the watershed scale, spatial variation in algal biomass was related (P < 0.05) with concentrations of NO2 + NO3 and soluble reactive phosphorus in two of the four study creeks. Nutrient diffusing substrata experiments showed that algal communities were either nitrogen-limited or not limited by nutrients, depending on stream and season.  相似文献   

15.
Urea‐N is a component of bioavailable dissolved organic nitrogen (DON) that contributes to coastal eutrophication. In this study, we assessed urea‐N in baseflow across land cover gradients and seasons in the Manokin River Basin on the Delmarva Peninsula. From March 2010 to June 2011, we conducted monthly sampling of 11 streams (4 tidal and 7 nontidal), 2 wastewater treatment plants, an agricultural drainage ditch, and groundwater underlying a cropped field. At each site, we measured urea‐N, DON, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), NO3?‐N, and NH4+‐N. In general, urea‐N comprised between 1% and 6% of TDN, with the highest urea‐N levels in drainage ditches (0.054 mg N/L) and wetland‐dominated streams (0.035–0.045 mg N/L). While urea‐N did not vary seasonally in tidal rivers, nontidal streams saw distinct urea‐N peaks in summer (0.038 mg N/L) that occurred several months after cropland fertilization in spring. Notably, the proportion of wetlands explained 78% of the variance in baseflow urea‐N levels across the Manokin watershed. In wetland‐dominated basins, we found urea‐N was positively related to water temperature and negatively related to DOC:DON ratios, indicating short‐term urea‐N dynamics at baseflow were more likely influenced by instream and wetland‐driven processes than by recent agricultural urea‐N inputs. Findings demonstrate important controls of wetlands on baseflow urea‐N concentrations in mixed land‐use basins.  相似文献   

16.
Riparian buffers have been used for many years as a best management practice to decrease the effects of nonpoint pollution from watersheds. The NC Conservation Reserve Enhancement Program (NC CREP) has established buffers to treat groundwater nitrate‐nitrogen (NO3?‐N) from agricultural sources in multiple river basins. A maturing 46 m wide riparian buffer enrolled in NC CREP was studied to determine its effectiveness in reducing groundwater NO3?‐N concentrations from a cattle pasture fertilized with poultry litter. Three monitoring blocks that included groundwater quality wells, water table wells, and soil redox probes, were established in the buffer. NO3?‐N concentrations decreased significantly across the buffer in all of the monitoring blocks with mean reductions of 76‐92%. Many biological processes, including denitrification and plant uptake, may have been responsible for the observed NO3?‐N reductions but could not be differentiated in this study. However, mean reductions in Cl? concentrations ranged from 48‐65% through the blocks, which indicated that dilution was an important factor in observed NO3?‐N reductions. These findings should be carefully considered for future buffer enrollments when assigning nitrogen removal credits.  相似文献   

17.
Riparian areas of large streams provide important habitat to many species and control many instream processes — but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from other regions and if there are consequences for management from any differences. In the moist forests along many small streams of the Pacific Northwest, the contrast between the streamside and upslope forest is not as strong as that found in drier regions. Small streams typically lack floodplains, and the riparian area is often constrained by the hillslope. Nevertheless, riparian‐associated organisms, some unique to headwater areas, are found along small streams. Disturbance of hillslopes and stream channels and microclimatic effects of streams on the riparian area provide great heterogeneity in processes and diversity of habitats. The tight coupling of the terrestrial riparian area with the aquatic system results from the closed canopy and high edge‐to‐area ratio for small streams. Riparian areas of the temperate, conifer dominated forests of the Pacific Northwest provide a unique environment. Forest management guidelines for small streams vary widely, and there has been little evaluation of the local or downstream consequences of forest practices along small streams.  相似文献   

18.
ABSTRACT: An agricultural nonpoint source polluted stream in northern Idaho was examined to determine seasonal and longitudinal patterns of periphyton chlorophyll α. Chlorophyll a was measured at eight sites along Lapwai Creek, a fifth order stream impacted by agricultural runoff containing nutrients and eroded soils. Seasonally, periphyton chlorophyll α was lowest in the spring (cumulative x?= 60.4 mg m?2) and highest in the summer (cumulative x?= 222 mg m?2). Winter concentrations were higher than expected (cumulative x?= 168.6 mg m?2). The headwaters, flowing through an open grassy meadow, had the lowest concentrations of the study (two-year x?= 49.7 mg m?2). Immediately below a small, eutrophic reservoir, periphyton chlorophyll α increased markedly (two-year x?= 155.8 mg m?2) and remained high through a deep canyon (two year x?= 135.5 mg m?2) and down to the mouth of the stream (two-year x?= 172.3 mg?2). Periphyton chlorophyll α in Lapwai Creek was at least two times greater than values reported in the literature for comparable, undisturbed Idaho streams. We suggest that increased nutrient concentrations via agricultural nonpoint source pollution and increased light penetration from the removal of large, woody riparian vegetation have resulted in high periphyton chlorophyll α along the continuum of Lapwai Creek.  相似文献   

19.
Evans, Daniel M., C. Andrew Dolloff, W. Michael Aust, and Amy M. Villamagna, 2012. Effects of Eastern Hemlock Decline on Large Wood Loads in Streams of the Appalachian Mountains. Journal of the American Water Resources Association (JAWRA) 48(2): 266‐276. DOI: 10.1111/j.1752‐1688.2011.00610.x Abstract: Eastern hemlock (Tsuga canadensis), a foundation species important to riparian forests of the Appalachian Mountains, is in decline due to the hemlock woolly adelgid (HWA) (Adelges tsugae). The effect of this insect on large wood (LW) production and recruitment to streams is largely unknown. We measured LW load, riparian forest composition, and T. canadensis health in 47 streams from Maine to Alabama and developed a conceptual model that frames the expected forest stand and instream LW response to the disturbance caused by HWA. In stands with HWA, 24.3% of the overstory T. canadensis basal area was stressed and 7.5% was dead, whereas only 3.0% was stressed and 2.0% was dead in stands without HWA. Mean T. canadensis effective LW load was 0.20 m3/100 m2 in streams with adjacent stands infested by HWA, almost three times higher than in streams flowing through uninfested stands (p = 0.048). Higher frequencies of LW were found at streams with HWA present and there was a positive association between the percent of dead T. canadensis and T. canadensis LW load (ρ = 0.4468; p = <0.0001). Greater total LW loads were associated with higher stream gradients, lesser bankfull widths, and streams at lower latitudes. Our research supports the hypothesis that HWA infestation of T. canadensis in riparian forest stands has increased LW loads in streams. This episodic disturbance to the riparian forest overstory may have lasting impacts on aquatic ecosystem structure and function.  相似文献   

20.
Riparian buffer zones are known to reduce diffuse N pollution of streams by removing and modifying N from agricultural runoff. Denitrification, often identified as the key N removal process, is also considered as a major source of the greenhouse gas nitrous oxide (N2O). The risks of high N2O emissions during nitrate mitigation and the environmental controls of emissions have been examined in relatively few riparian zones and the interactions between controls and emissions are still poorly understood. Our objectives were to assess the rates of N2O emission from riparian buffer zones that receive large loads of nitrate, and to evaluate various factors that are purported to control N emissions. Denitrification, nitrification, and N2O emissions were measured seasonally in grassland and forested buffer zones along first-order streams in The Netherlands. Lateral nitrate loading rates were high, up to 470 g N m(-2) yr(-1). Nitrogen process rates were determined using flux chamber measurements and incubation experiments. Nitrous oxide emissions were found to be significantly higher in the forested (20 kg N ha(-1) yr(-1)) compared with the grassland buffer zone (2-4 kg N ha(-1) yr(-1)), whereas denitrification rates were not significantly different. Higher rates of N2O emissions in the forested buffer zone were associated with higher nitrate concentrations in the ground water. We conclude that N transformation by nitrate-loaded buffer zones results in a significant increase of greenhouse gas emission. Considerable N2O fluxes measured in this study indicate that Intergovernmental Panel on Climate Change methodologies for quantifying indirect N2O emissions have to distinguish between agricultural uplands and riparian buffer zones in landscapes receiving large N inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号