首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background, aim, and scope  

Zinc is an essential micronutrient element but its concentrations found in contaminated soils frequently exceed those required by the plant and soil organisms, and thus create danger to animal and human health. Phytoremediation is a technique, often employed in remediation of contaminated soils, which aims to remove heavy metals or other contaminants from soils or waters using plants. Arabidopsis (A.) halleri ssp. gemmifera is a plant recently found to be grown vigorously in heavy metal contaminated areas of Japan and it contained remarkably high amount of heavy metals in its shoots. However, the magnitude of Zn accumulation and tolerance in A. halleri ssp. gemmifera need to be investigated for its use as a phytoremediation plant.  相似文献   

2.

Background, aim, and scope  

The success of phytoextraction depends upon the identification of suitable plant species that hyperaccumulate heavy metals and produce large amounts of biomass using established agricultural techniques. In this study, the Mediterranean saltbush Atriplex halimus L., which is a C4 perennial native shrub of Mediterranean basin with an excellent tolerance to drought and salinity, is investigated with the main aim to assess its phytoremediation potential for Pb and Cd removal from contaminated soils. In particular, the influence of soil salinity in metal accumulation has been studied as there is notable evidence that salinity changes the bioavailability of metals in soil and is a key factor in the translocation of metals from roots to the aerial parts of the plant.  相似文献   

3.

Aim of the study  

Helophytes like rush and reed are increasingly used for phytoremediation of contaminated water. This study characterises the response of rush and reed plants to chemical stressors such as chlorobenzene, benzene and methyl-tert-butyl ether. The extractable wax layer of the cuticle was chosen for detailed investigations due to its multiple, particularly, protective functions for plants and its easy availability for analysis.  相似文献   

4.
This paper verifies the presence of significant interclonal variation in the tolerance of hybrid poplar (Populus deltoides Bartr. cv. Angulata × P. trichocarpa Torr. and Gray) to sulfur dioxide fumigation. Rooted stem cuttings of four hybrid poplar clones were exposed to 5 ppm sulfur dioxide for 0, 3, 6, 9, or 12 hours in controlled environment chambers. Multivariate analyses were made from the shoot growth measurements recorded for 4 weeks before and after fumigation and on the data of foliar injury induced by sulfur dioxide. The following factors were statistically significant in determining growth response and foliar injury: (1) genotype; (2) duration of treatment; and (3) interaction between genotype and hours of fumigation. All partial correlations between foliar injury and subsequent shoot growth were positive and significant. Sufficient genetic variation appears to exist in this Populus hybrid to encourage selection of clones tolerant to short-term exposures of high levels of sulfur dioxide.  相似文献   

5.

Introduction  

Field experiments at the Shenyang Experimental Station of Ecology were conducted to study the adsorption, accumulation, and remediation of heavy metals by poplar and larch grown in artificially contaminated soil.  相似文献   

6.

Background, aim, and scope  

Water quality impairment by nutrient enrichment from agricultural activities has been a concern worldwide. Phytoremediation technology using aquatic plants in constructed wetlands and stormwater detention ponds is increasingly applied to remediate eutrophic waters. The objectives of this study were to evaluate the effectiveness and potential of water lettuce (Pistia stratiotes L.) in removing nutrients including nitrogen (N) and phosphorus (P) from stormwater in the constructed water detention systems before it is discharged into the St. Lucie Estuary, an important surface water system in Florida, using phytoremediation technologies.  相似文献   

7.
Three ex situ collections of poplar clones from natural populations of Populus alba and P. nigra growing in northern Italy were assessed for their genetic dissimilarity (GD) by means of amplified fragment length polymorphism (AFLP). The high GD evidenced within populations was exploited for screening 168 clones in a field trial on heavy metal-polluted soil. After one growth season, clonal differences in plant survival and growth were observed. On the basis of performance, six clones were singled out, and used to evaluate copper and zinc accumulation in different organs. Clonal differences in metal concentrations were most evident for leaves and stems; one clone of P. alba (AL35) had a distinctly higher concentration of both metals in the roots. Leaf polyamine (putrescine, spermidine, spermine) profiles correlated with tissue metal concentrations, depending on the clone, plant organ and metal. In particular, the high metal-accumulating clone AL35 exhibited a dramatically higher concentration of free and conjugated putrescine. Overall, the results indicate that, given the high GD of Populus even within populations, it is possible to identify genotypes best suited for soil clean-up, and useful also for investigating physiological markers associated with high metal accumulation/tolerance  相似文献   

8.

Introduction  

Within the last decade, numerous studies have investigated the role of environmental history on tolerance to stress of many organisms. This study aims to assess if Manila clams Ruditapes philippinarum may react differently to cadmium exposure and trematode parasite infection (Himasthla elongata) depending on their origin and environmental history in Arcachon Bay (France).  相似文献   

9.
Genetic engineering of plants for phytoremediation is thought to be possible based on results using model plants expressing genes involved in heavy metal resistance, which improve the plant’s tolerance of heavy metals and accumulation capacity. The next step of progress in this technology requires the genetic engineering of plants that produce large amounts of biomass and the testing of these transgenic plants in contaminated soils. Thus, we transformed a sterile line of poplar Populus alba X P. tremula var. glandulosa with a heavy metal resistance gene, ScYCF1 (yeast cadmium factor 1), which encodes a transporter that sequesters toxic metal(loid)s into the vacuoles of budding yeast, and tested these transgenic plants in soil taken from a closed mine site contaminated with multiple toxic metal(loid)s under greenhouse and field conditions. The YCF1-expressing transgenic poplar plants exhibited enhanced growth, reduced toxicity symptoms, and increased Cd content in the aerial tissue compared to the non-transgenic plants. Furthermore, the plants accumulated increased amounts of Cd, Zn, and Pb in the root, because they could establish an extensive root system in mine tailing soil. These results suggest that the generation of YCF1-expressing transgenic poplar represents the first step towards producing plants for phytoremediation. The YCF1-expressing poplar may be useful for phytostabilization and phytoattenuation, especially in highly contaminated regions, where wild-type plants cannot survive.  相似文献   

10.
The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts.  相似文献   

11.
12.
A mass balance study was performed under controlled field conditions to investigate the phytoremediation of perchloroethylene (PCE) by hybrid poplar trees. Water containing 7–14 mg L?1 PCE was added to the test bed. Perchloroethylene, trichloroethylene, and cis-dichloroethylene were detected in the effluent at an average of 0.12 mg L?1, 3.9 mg L?1, and 1.9 mg L?1, respectively. The total mass of chlorinated ethenes in the water was reduced by 99%. Over 95% of the recovered chlorine was as free chloride in the soil, indicating near-complete dehalogenation of the PCE. Transpiration, volatilization, and accumulation in the trees were all found to be minor loss mechanisms. In contrast, 98% of PCE applied to an unplanted soil chamber was recovered as PCE in the effluent water or volatilized into the air. These results suggest that phytoremediation can be an effective method for treating PCE-contaminated groundwater in field applications.  相似文献   

13.
In this work, the phytoremediation potential of metalaxyl, a commonly used persistent, mobile and leachy fungicide, by Solanum nigrum L. plants was studied. The study revealed that this plant species can be used as an excellent metalaxyl phytoremediation tool, thus providing a cost effective and environmentally friendly clean technology for the decontamination of sites and effluents. As it can be sowed directly in the remediation site, is able to complete its life cycle without suffering major stress. Because it accumulates high amounts of the fungicide in the aboveground tissues, enables its concentration and proper disposal by cutting off the corresponding plant part. The study also suggests that the tolerance to metalaxyl is due to a suitable antioxidant response comprising proline accumulation and guaiacol peroxidase and glutathione-S-transferase enhanced activities, that reduce oxidative damage to the plant organs.  相似文献   

14.

Using association of plants, nanomaterials, and plant growth-promoting bacteria (PGPR) is a novel approach in remediation of heavy metal-contaminated soils. Co-application of nanoscale zerovalent iron (nZVI) and PGPR to promote phytoremediation of Sb-contaminated soil was investigated in this study. Seedlings of Trifolium repens were exposed to different regimes of nZVI (0, 150, 300, 500, and 1000 mg/kg) and the PGPR, separately and in combination, to investigate the effects on plant growth, Sb uptake, and accumulation and physiological response of the plant in contaminated soil. Co-application of nZVI and PGPR had positive effects on plant establishment and growth in contaminated soil. Greater accumulation of Sb in the shoots compared to the roots of T. repens was observed in all treatments. Using nZVI significantly increased accumulation capacity of T. repens for Sb with the greatest accumulation capacity of 3896.4 μg per pot gained in the “PGPR+500 mg/kg nZVI” treatment. Adverse impacts of using 1000 mg/kg nZVI were found on plant growth and phytoremediation performance. Significant beneficial effect of integrated use of nZVI and PGPR on plant photosynthesis was detected. Co-application of nZVI and PGPR could reduce the required amounts of nZVI for successful phytoremediation of metalloid polluted soils. Intelligent uses of plants in accompany with nanomaterials and PGPR have great application prospects in removal of antimony from soil.

  相似文献   

15.

Background, aim, and scope  

Along transects under a mixed woodland of English Oak (Quercus robur) and Common Ash (Fraxinus excelsior) growing on a trichloroethylene (TCE)-contaminated groundwater plume, sharp decreases in TCE concentrations were observed, while transects outside the planted area did not show this remarkable decrease. This suggested a possibly active role of the trees and their associated bacteria in the remediation process. Therefore, the cultivable bacterial communities associated with both tree species growing on this TCE-contaminated groundwater plume were investigated in order to assess the possibilities and practical aspects of using these common native tree species and their associated bacteria for phytoremediation. In this study, only the cultivable bacteria were characterized because the final aim was to isolate TCE-degrading, heavy metal resistant bacteria that might be used as traceable inocula to enhance bioremediation.  相似文献   

16.
Knowledge of mechanisms for uptake, translocation, and accumulation of soil contaminants in plants is essential to successful applications of the phytoremediation technique. Analysis and evaluation of these mechanisms would be greatly facilitated by the availability of a dynamic model that can predict soil contaminant uptake by roots, transport from roots through stems to leaves, and accumulation in plant during the transport process. In this study, a dynamic model for uptake and translocation of contaminants from a soil-plant ecosystem (UTCSP) was developed using the STELLA modeling tool. The structure of UTCSP consists of time-dependent simultaneous upward transport, accumulation, and transpiration of water and contaminants in the soil-plant-atmosphere continuum, which was driven by water potential gradients among soils, roots, stems, leaves, and atmosphere. The UTCSP model was calibrated using the experimental measurements and applied to predict phytoremediation of 1,4-dioxane from a sandy soil by a poplar tree. Simulation results showed that about 20% of 1,4-dioxane was removed from the soil by the poplar tree in 90 days. The simulations further revealed that while the mass of 1,4-dioxane in the poplar tree increased consecutively with time, the rates of water and 1,4-dioxane uptake and translocation in the roots, stems, and leaves have a typical diurnal distribution pattern: increasing during the day and decreasing during the night, resulting from daily variations of plant water potentials that were caused by leaf water transpiration. This study suggests that the UTCSP model is a useful tool for estimating phytoremediation of contaminants in the soil-plant ecosystems.  相似文献   

17.

Purpose  

Polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and PCB congeners accumulation profile were measured in the liver of two torpedinid species (Torpedo nobiliana and Torpedo marmorata) from the Mediterranean Sea (Adriatic Sea) in order to investigate the relative toxicological impact of these highly toxic PCBs in the organisms in question.  相似文献   

18.

Introduction  

From the metallurgic industry zone of Dambovita County, we harvested and analyzed seven herbaceous plants species (Lolium perenne, Festuca pratensis, Stipa capillata, Agrostis alba, Cynodon dactylon, Luzula campestris, and Agrostis tenuis) to establish the heavy metal accumulation levels in these species.  相似文献   

19.

In order to study the bioaccumulation of Pb, Cr, Ni, and Zn and the stress response, the floating aquatic plant Limnobium laevigatum was exposed to increasing concentrations of a mixture of these metals for 28 days, and its potential use in the treatment of wastewater was evaluated. The metal concentrations of the treatment 1 (T1) were Pb 1 μg L−1, Cr 4 μg L−1, Ni 25 μg L−1, and Zn 30 μg L−1; of treatment 2 (T2) were Pb 70 μg L−1, Cr 70 μg L−1, Ni 70 μg L−1, and Zn 70 μg L−1; and of treatment 3 (T3) were Pb 1000 μg L−1, Cr 1000 μg L−1, Ni 500 μg L−1, and Zn 100 μg L−1, and there was also a control group (without added metal). The accumulation of Pb, Cr, Ni, and Zn in roots was higher than in leaves of L. laevigatum, and the bioconcentration factor revealed that the concentrations of Ni and Zn in the leaf and root exceeded by over a thousand times the concentrations of those in the culture medium (2000 in leaf and 6800 in root for Ni; 3300 in leaf and 11,500 in root for Zn). Thus, this species can be considered as a hyperaccumulator of these metals. In general, the changes observed in the morphological and physiological parameters and the formation of products of lipid peroxidation of membranes during the exposure to moderate concentrations (T2) of the mixture of metals did not cause harmful effects to the survival of the species within the first 14 days of exposure. Taking into account the accumulation capacity and tolerance to heavy metals, L. laevigatum is suitable for phytoremediation in aquatic environments contaminated with moderated concentrations of Cr, Ni, Pb, and Zn in the early stages of exposure.

  相似文献   

20.

Purpose  

The purpose of the research is to investigate the application of bagasse fly ash, a sugar industry solid waste for the synthesis of zeolites and their behavior for the sorption of p-nitrophenol (p-NP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号