首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Larvae of Pisoides edwardsi (Bell, 1835) have been reared in the laboratory at 2 different temperatures (13.8° and 18.5°C), from hatching to megalops stage. The two zoeal stages and the megalops, as well as the setation of the functional appendages are described and illustrated. The main characteristics useful to differentiate the larvae of P. edwardsi from those of Libidoclaea granaria, the other Chilean species belonging to the same sub-family, are discussed. Data on duration of zoeal development, length of moulting intervals, and mortality at the 2 test temperatures, are also given.This study was financially supported, in part, by the Chilean Ministry of Agriculture.  相似文献   

2.
Larvae were hatched from ovigerous Dungeness crabs, Cancer magister, collected from Puget Sound Basin, Washington, USA, in April, 1986, and the effects of temperature on rates of survival and development were studied for each of the five zoeal stages both in small batch-culture and in individual culture. Culture method had little effect on the results at 10°, 15°, and 20°C. Increased mortality was measured at all stages at 20°C, with 100% mortality occurring during the terminal fifth stage. Fifth stage larvae may also show higher mortality at 15°C than at 10°C. Stage duration varied inversely with temperature at all stages, although differences between 10° and 15°C were greater than between 15° and 20°C. The results indicate that survival and stage duration are independent of the values for the previous and subsequent stages, that variability among larvae in instar duration increases with temperature, and that the terminal fifth zoeal stage is the most sensitive to temperature stress. Duration of a late zoeal instar is not related to its earlier development rate nor can early development rates be used to predict whether individual zoeae will successfully develop to the megalopa. Measurements of megalopa dry weights indicate no differences due either to previous culture temperatures or to total time to the megalopa. Predictive models of larval transport that require estimates of larval duration should account for both changes in temperature response that can affect individual stage duration, and variability among individuals in stage duration that can influence the degree of larval dispersion.  相似文献   

3.
Metabolic-temperature responses of the developmental stages of the sublittoral crab Cancer irroratus cultured at 10° to 20°C daily cyclic and 15°C constant temperatures were determined. Generally, the metabolic rate increased with temperature in the lower range with Q10's (temperature coefficients) above 2, compensated in the midrange with Q10's between 1 and 2, and declined at the higher temperatures with Q10 values less than 1. For the larvae cultured at a constant temperature of 15°C, the compensatory response range narrowed with development from first zoeae to the later zoeal stages. In contrast, the compensatory response of the first zoeae, megalops, and crab stages within the range 10° to 25°C was interrupted by a zone of thermal sensitivity between 15° and 20°C for those individuals cultured in the 10° to 20°C cyclic regime. The compensatory response range is narrower for the third stage zoeae and broader for the second, fourth, and fifth stage zoeae. Metabolic rate-temperature (M-T) patterns of C. irroratus developmental stages cultured under the cyclic regime varied from those held at constant temperature by increased respiration and metabolic rate compensation between 20° and 25°C, and by an extension of the metabolically active range towards higher temperatures.  相似文献   

4.
Female mud crabs, Rhithropanopeus harrisii, carrying newly extruded eggs, were collected from the Petaluma River (San Francisco Bay Estuarine System, California, USA) in summer 1985, and exposed to factorial combinations of temperature (20°, 25° or 30°C) and salinity (2, 5, 15, 25, or 32%.). Upon hatching, dry weights of 12 to 15 h-old zoeae were determined. Subgroups of the remaining zoeae were transferred from hatching salinities to the salinities listed above and raised until metamorphosis to megalopa. Low salinities reduced zoeal dry weights by as much as 25%. Temperature played a secondary role in reduction of hatching weight of zoeae. Survival of larvae through zoeal development was best when hatching and rearing salinities were the same; in this case, overall survival increased with temperature. Both duration of zoeal development and megalopal dry weights were strongly influenced by temperature and rearing salinity, with only a small contribution from hatching salinity. The influence of hatching salinity was most obvious at extremes of the range tested. These studies indicate that physical conditions during embryogenesis profoundly influence subsequent larval development. Interpretation of experimental approaches to study ecophysiological adaptations of larval stages should not neglect the role of physical conditions during embryogenesis.  相似文献   

5.
Temperature and salinity affected both length of larval development and mortality inNecora puber collected in the Ría de A Coruña during December 1984 and January 1985. Development time decreased considerably with increased temperature. This decrease was sharper when temperature increased from 15° to 20°C than when it increased from 20° to 25°C. At 35S, average development took 48, 32 and 28 d at 15°, 20° and 25°C, respectively. At the three salinities tested (25, 30 and 35), larval development was completed only at 15°C, at 20°C/30 and 35S, and at 25°C/35S. Development times at 15° and 20°C were highly significantly different at both 35 and 30S (P 0.01). However, there were no significant differences between development times at 20° and 25°C (P > 0.05). Within any one specific temperature series, no significant difference was observed between the salinity values tested (P > 0.05). The duration of each of the five zoeal stages was similar within each and the same temperature/salinity combination, whereas the duration of the megalop was twice as long as any of the zoeal stages. The combination of the lowest temperature (15°C) and the highest salinity (35) tested resulted in the greatest larval survival of 28%. Highest mortality occurred at 25°C, at which temperature development was completed only at 35S. A sharp drop in larval survival was observed in the transition period Zoea V — megalop in all combinations of temperature and salinity tested. Within the limits of tolerance to temperature and salinity, the former effected more pronounced differences in the duration of larval development, while salinity appeared to constitute a limiting factor for survival.  相似文献   

6.
Effects of the juvenile hormone (JH) mimic hydroprene (Altozar®: ZR-512), which exhibits high activity against Lepidoptera, were studied on the larval development of the mud-crab Rhithropanopeus harrisii (Gould) (Brachyura: Xanthidae). Larvae reared in 20 S at 3 cycles of temperature of 20° to 25°C, 25° to 30°C and 30° to 35°C, were exposed to 0.01, 0.1 and 0.5 ppm hydroprene from hatching to the first crab stage. Larvae were also exposed to 0.1 and 0.5 ppm hydroprene only from the megalopa stage to the first crab stage. When larvae were treated with hydroprene throughout larval life, survival was significantly reduced with increasing concentrations of the compound at all temperature cycles. Synergistic effect between hydroprene and temperature on survival of zoeal larvae was not observed. On the average there was 11% less survival in the zoeal stages at the 0.01 ppm concentration. of hydroprene than in the control, an additional reduction of 13% occurred at 0.1 ppm, and finally there was a further decrease of 46% at 0.5 ppm hydroprene. Significant decrease in survival in the megalopa stage occurred only in the 0.5 ppm concentration of hydroprene at the lowest temperature cycle when larvae were exposed to the compound from hatching. When larvae were treated with hydroprene only within the megalopa stage, a significant reduction in survival was not observed. First-stage zoeae were the most sensitive of the larval stages to hydroprene. Duration of zoeal development was significantly delayed at 0.5 ppm hydroprene at the two lower temperature cycles, whereas in the megalopa stage the delay began at the 0.1 ppm level at all 3 temperature cycles when larvae were exposed to hydroprene from hatching. A significant delay was also observed at 0.1 ppm hydroprene at the two lower cycles when larvae were exposed to hydroprene only in the megalopa stage; at 30° to 35°C a significant delay was observed only at the 0.5 ppm level. The results show that metamorphosis to the first crab stage was not inhibited at the 0.5 ppm level of hydroprene or lower. Reduction in survival and increase in duration of larval development were presumably related to stress conditions caused by hydroprene. The results also suggest an interaction between temperature and hydroprene on survival of megalopa larvae and duration of larval development.  相似文献   

7.
Three species of the marine wood-boring genus Limnoria were subjected to low dissolved oxygen concentrations at different temperatures under laboratory conditions. 28-day median tolerance limits (TLm) were 1.0 mg/l of dissolved oxygen at 15° to 16°C and 19° to 20°C for L. lignorum, 0.75 and 0.60 mg/l at 15° to 16°C and 22° to 25°C, respectively, for L. quadripunctata, and 1.0 and 1.18 mg/l at 15° to 16°C and 22° to 25°C, respectively, for L. tripunctata. The amount of burrowing activity, as measured by the egestion rate, was directly related to the amount of dissolved oxygen. A daily egestion rate of 0.116 mg per day in L. tripunctata at 22° to 25°C was the highest figure measured. The daily egestion rate was sharply reduced at dissolved oxygen concentrations below 3.0 mg/l.  相似文献   

8.
We exposed zoeae of the mud crab Rhithropanopeus harrisii to either bis(tri-n-butyltin) oxide (TBT) or di-n-butyltin dichloride (DBT). Experiments were repeated with zoeae from females collected from the Petaluma River, California in June–August 1983 and 1984 or from Sykes Creek, Florida (USA) in February 1985. Using probit analysis, we calculated LC50 values for exposure lasting the duration of zoeal development. Tributyltin was 54 to 65 times more toxic than dibutyltin, the lower value characterizing the response of Florida zoeae. Increases in duration of zoeal development and reduction of dry weights of megalops, both sublethal responses, were dose-dependent for the two populations. However, zoeae from Florida consistently had shorter duration of zoeal development and higher megalopal weights at metamorphosis, indicating less sensitivity to an identical exposure to either organotin compound. The results of these experiments show that dibutyltin, a putative degradation product of tributyltin, is less toxic than the parent compound. In addition, early life-history stages of two populations may have significantly different responses to xenobiotic stress which, in the case of brachyuran larvae, is evident in a differential reduction of survival and growth and an increase in duration of zoeal development.  相似文献   

9.
Mud crabs, Rhithropanopeus harrisii (Gould), were exposed continuously for 6 months after hatching to water-soluble fractions (WSF) of No. 2 fuel oil. Survival, growth and development rate were monitored during this time. The zoeal stages were the most sensitive to fuel oil. A 20% WSF (0.36 ppm total naphthalenes, 1.26 ppm total hydrocarbons) was acutely toxic to these stages. Of the zoeal stages, the first stage appeared to be the most sensitive. The combined duration of the 4 zoeal stages was significantly increased by increasing WSF exposure concentrations. The megalopa and crab stages were not particularly sensitive to continued petroleum hydrocarbon exposure, particularly when compared to zoeal stages. However, mean duration of the megalopa and first crab stages was significantly affected by oil exposure. Individuals which survived the highest exposure concentrations as larvae appeared to grow larger during the crab stages, so that at the end of 6 months comparably staged crabs were equal to or larger than both control crabs and those exposed to low WSF concentrations. Stage distributions at the end of 6 months showed no differences due to WSF exposure. Sex ratios, which could be determined at the end of 6 months, were approximately 1, indicating no sex-related differential sensitivity to WSF exposure, at least as larvae or juveniles. The data indicate that these crabs possess considerable ability to recover from the effects of chronic sublethal exposure to petroleum hydrocarbons. The most deleterious effects of oil pollution on this species may be due to its impact on larval recruitment into the adult population.  相似文献   

10.
Effects of simultaneous short-term (7.5 to 60 min) thermal stress (24° to 34°C) and total residual chlorination (0.05 to 1.0 mg l-1) on specific development stages of the mummichog Fundulus heteroclitus (Pisces: Cyprinodontidae), were investigated. For the embryonic stages, the total number of successfully hatched larvae was used as the criterion to measure effect. For the larval stages, survival 24 h after exposure was used. In the embryonic stages, temperature was the most important main variable. Only one embryonic stage (gastrula) was confounded by second-order interactions (temperature x duration of exposure x total residual chlorination). Both 0-day and 7-day-old larval stages showed significant higher-order interactions for all combinations of test parameters, suggesting the presence of synergistic effects of the three main experimental variables.Contribution No. 308 to the Gulf Breeze Environmental Research Laboratory. Contribution No. 183 to the Belle W. Baruch Institute for Marine Biology and Coastal Research.  相似文献   

11.
J. H. Rupp 《Marine Biology》1973,23(3):183-189
Select temperatures, above normal, are shown to reduce success of fertilization and normal early cleavage in the laboratory for the echinoderms Acanthaster planci (L.), Culcita novaeguineae Muller and Troschel, Linckia laevigata (L.), Echinometra mathaei (de Blainville), and Diadema savignyi Michelin. The data indicate that cleavage is more sensitive to increased temperature than is fertilization. Upper tolerance limits for early cleavage in most of the species examined is near 34.0°C. The early developmental stages of A. planci were the most sensitive to elevated temperature, and those of E. mathaei, the least sensitive. Further experiments with E. mathaei showed that unfertilized ova were still viable, dividing normally when fertilized after 2 h exposure at 36.0°C. The ova were significantly less viable after 3 h. Early cleavage stages of E. mathaei were resistant to 36.0°C for exposure times of up to 40 min, but were inhibited beyond this period. It is suggested that the ability of E. mathaei to develop normally at 34.0°C (6C° above ambient temperature) and to withstand limited exposure to 36.0°C may account for the wide distribution of this species in habitats which are often subjected to broad temperature fluctuations, such as reef flats.Contribution No. 46 from the University of Guam Marine Laboratory.  相似文献   

12.
Zoeae of the mud crabRhithropanopeus harrisii (Gould) were exposed continuously throughout larval development to factorial combinations of salinity, temperature and specific aromatic hydrocarbon concentrations. Salinities and temperatures were 5, 15, or 25 and 20°, 25°, or 30°C, respectively. Either phenanthrene or naphthalene was tested separately at respective concentrations of 0, 100, 150 or 200 ppb and 0, 125, 250 or 500 ppb. Phenanthrene was much more toxic than naphthalene. Naphthalene was not acutely toxic at any physical factor combination-naphthalene concentration tested. Both compounds caused the highest mortality at low salinities. The time course of mortality due to phenanthrene exposure showed that ecdysis between the first and second zoeal stage was the most sensitive period for the larvae exposed to aqueous hydrocarbons. Phenanthrene-exposed larvae had a decreased development rate, but the naphthalene-exposed larvae developed faster than the controls.  相似文献   

13.
Density stratification and respiration lead to vertical gradients in dissolved oxygen in many aquatic habitats. The behavioral responses of fish larvae to low dissolved oxygen in a stratified water column were examined during 1990–1991 with the goal of understanding how vertical gradients in dissolved oxygen may directly affect the distribution and survival of fish larvae in Chesapeake Bay, USA. In addition, the effects of low oxygen on 24-h survival rates were tested so that results of behavior experiments could be interpreted in the context of risk to the larve. Naked goby [Gobiosoma bosc (Lacépède)] and bay anchovy [Anchoa mitchilli (Valenciennes)] larvae strongly avoided dissolved oxygen concentrations <1 mg 1-1, which were lethal within 24 h at 25 to 27°C. In addition, naked goby larvae, whose behavior was tested at a wider range of dissolved oxygen concentrations, also showed a reduced preference for an oxygen concentration of 2 mg 1-1, which leads to reduced survival during long-term exposures and to reduced feeding rates. There were no major differences in behavior or survival between the two species, or between the two age classes of naked gobies tested. Results suggest that behavioral responses to oxygen gradients will play a large role in producing marked vertical changes in abundance of feeding-stage larvae in Chesapeake Bay; mortality from direct exposure to low oxygen will likely be much less important in producing vertical patterns of larval abundance.  相似文献   

14.
Survival and growth over an environmental range of temperature and salinities were examined in order to help assess the importance of these environmental factors in affecting the distribution, abundance and survival of larvae and provide greater understanding of factors affecting fluctuations in adult Pandalus jordani Rathbun population sizes. Larvae were shown to have a wide tolerance to salinity, especially in the early stages, but a relatively narrow tolerance to temperature. The optimal temperatures for survival, 8° to 11°C, were also optimal for growth as reflected by maximal growth increments and body size. It is therefore felt that fluctuations in temperature as seen within and between successive larval seasons would have profound effects on larval survival, growth rates and size at metamorphosis to the benthic juvenile phase.  相似文献   

15.
Respiration rates of Hypnea musciformis (Wulfen) Lamouroux in Florida, USA, generally increased with increased temperature. Gulf coast H. musciformis respired at significantly higher rates than the Atlantic coast population, which exhibited a region of temperature independence between 24°–32°C. Respiration rates were highest in the fall and winter, during the periods of rapid growth. Respiration rates were lowest in the summer indicating a period of storage and low metabolism. Photosynthetic responses to various levels of light and temperature indicated that the Gulf coast population was more tolerant to high light intensities than the Atlantic coast population. Maximum photosynthetic responses for both populations occurred between 24° and 32°C which corresponds to the shallow slope region of the respiration-temperature curves. The results indicate that water temperature rather than light intensity is a significant factor in modifying seasonal photosynthetic capacities. The greatest seasonal variation in photosynthetic responses occurred at the light-temperature levels of highest responses while little seasonal variation was demonstrated at tolerance limits.  相似文献   

16.
Larvae of Rhithropanopeus harrisii (Gould) were reared from hatching to the first or second crab stages in 11 combinations of salinities and cyclic temperatures (5, 20, and 35 S at 20° to 25°C, 25° to 30°C, and 30° to 35°C; 25 S at 20° to 25°C and 30° to 35°C). The larvae survived to the megalops and first crab stages in all salinities and cycles of temperature other than 5 S at 30° to 35°C. The best survival to the megalops (94%) and first crab (90%) stages occurred in 20 S, 20° to 25°C. In all other combinations of salinities and temperatures there was a reduction in survival to the first crab stage. The duration of the larval stages was affected significantly by temperature, whereas the effect of salinity on the mean days from hatching to the first crab stage was not consistent at the different temperature cycles. Development to the first crab stage required the shortest time in 20 S, 30° to 35°C (mean 12.3 days), and the longest time in 5 and 35 S, 20° to 25°C (mean 22.6 days and 21.6 days, respectively). Megalops larvae reared in 35 S at all cycles of temperature, as well as larvae in 20 and 25 S, 30° to 35°C, showed a high percentage of abnormality, with the highest percentage occurring in 35 S, 30° to 35°C. It appears that larval development of R. harrisii is strongly influenced by environmental factors and not solely related to genetic differences.This research was supported by grants from the Nordic Council for Marine Biology and the U.S. Atomic Energy Commission [Grant No. At-(40-1)-4377].Contribution No. 116, Zoological Museum, University of Oslo, Norway.  相似文献   

17.
The difference in morphology between zoeae of Cancer magister Dana from Alaskan and Californian waters was documented to determine if the morphological variation is attributable to environmental influences. First-stage zoeae from Alaska have significantly longer carapace spines than zoeae from central California. The dorsal, rostral and lateral carapace spines were 14, 14 and 29% longer, respectively, in the Alaskan zoeae. The effect of temperature was tested on zoeal morphology as it is an obvious environmental difference between Alaskan and Californian waters. Ovigerous female crabs collected in southeastern Alaska in 1984 were held at 1°, 5°, 10° and 15° C until hatching occurred. Eggs were sampled seven times during the incubation period, and relative mortality, egg diameter and development stage were measured. All of the crabs and eggs at 1° C died before hatching occurred. Egg mortality averaged less than 2% in the other temperature treatments. Egg diameter increased significantly over the incubation period for all temperatures. Developmental rate of the embryos was inversely related to temperature. Hatching first occurred in 42 d at 15° C, 60 at 10° C and 160 d at 5° C. Newly hatched zoeae were collected and body length, dorsal, rostral and lateral carapace spines were measured. Significant differences existed between all temperatures for all spine lengths, with longer spines occurring at lower temperatures. Zoeal body lengths were also significantly different between the three temperatures. The results of this study question the use of spine lengths to distinguish similar larval species.  相似文献   

18.
Effects of 0.01, 0.1 and 1.0 ppm methoprene (Altosid®: ZR-515), a juvenile hormone (JH) mimic which shows high activity against some economically important insect pests, especially Diptera, were tested on larvae of the mud-crab Rhithropanopeus harrisii (Gould) (Brachyura: Xanthidae) from hatching to the first crab stage under optimum and stress conditions of a number of salinities and cyclic temperatures. There was a significant reduction in survival of zoeal larvae with increasing concentrations of methoprene in nearly all combinations of salinity and temperature. On the average there was 9% less survival in the 0.01 ppm concentration of methoprene than in the control, and in the 0.1 ppm concentration the survival was further reduced by another 16%. At 1.0 ppm methoprene no larvae survived beyond the first zoeal stage under optimum conditions or under stressful combinations of salinity and temperature. Except at 0.2 ppm in 27.5% S, survival of the megalopa was not significantly reduced in 0.01 or 0.1 ppm methoprene in any salinity or temperature, although the percentage of abnormal megalopa increased under stress conditions. The first zoeal stage was the most sensitive of the larval stages to methoprene as well as to salinity and temperature stress. The duration of zoeal development was significantly lengthened with an increase in concentration of methoprene under nearly all conditions of salinity and temperature. The JH mimic had, however, no significant effect on the duration of megalopa development. A significant synergism between methoprene, salinity and temperature was not observed. It can be concluded from the results that methoprene does not inhibit metamophosis of R. harrisii larvae at the 0.1 ppm level or lower. Reduction in survival of zoeal stages and increased duration of zoeal development with increasing concentrations of methoprene are presumably related to stress.  相似文献   

19.
Lower and upper survival temperatures of microthalli of 25 species of South American Phaeophyceae isolated from central Peru (14°S) to the Canal Beagle (55°S) were determined using 2-wk exposure for the upper and 4-wk exposure for the lower limit. All species survive 4 wks at -2°C. With respect to the upper limit, species reported only from southernmost South America tolerate 19.9 to 24.5°C (n=8), and species occurring from Cape Horn to central Chile 24.6 to 27.4°C (n=7). Three species that occurred as far north as northern Chile and Peru before the 1982–1983 El Niño event, and whose northern limit was dramatically shifted southwards in 1983, tolerate 20.8 to 25.3°C, whereas five species that have survived in Peru tolerate 25.6 to 28.5°C. Tinocladia falklandica which tolerates 27.8 to 28.1°C but lives only in southernmost South America and Striaria attenuata, which tolerates 31.6 to 31.9°C but occurs at ca. 42°S, are exceptional. Their high temperature tolerance may have no adaptive value in South America. They are restricted to the cold-temperate region due to low temperature requirements for reproduction or for reasons yet unknown. In general, the northern distributional limits of the Phaeophyceae studied along the temperate Pacific coast of South America are reproduction boundaries, except in El Niño years when they are redefined according to the species' upper suvival limits. Temperature tolerance of isolates from northern Chile and Peru agrees well with maximum temperatures reached during the 1983 El Niño.  相似文献   

20.
Survival, developmental and consumption rate (Artemia nauplii ingested per day) as well as predation efficiency (ingested per available Artemia nauplii) were studied during the larval development of the shallow-water burrowing thalassinid Callianassa tyrrhena (Petagna, 1792), which exhibits an abbreviated type of development with only two zoeal stages and a megalopa. The larvae, hatched from berried females from S. Euboikos Bay (Aegean Sea, Greece), were reared at 10 temperature–food density combinations (19 and 24 °C; 0, 2, 4, 8 and 16 Artemia nauplii d−1). Enhanced starvation resistance was evident: 92 and 58% of starved zoeas I molted to zoea II, while metamorphosis to megalopa was achieved by 76 and 42% of the hatched zoeas at 19 and 24 °C, respectively. The duration of both zoeal stages was affected by temperature, food density and their interaction. Nevertheless, starvation showed different effects at the two temperatures: compared to the fed shrimp, the starved zoeae exhibited accelerated development at 19 °C (8.4 d) but delayed metamorphosis at 24 °C (5.9 d). On the other hand, both zoeal stages were able to consume food at an increased rate as food density and temperature increased. Predation efficiency also increased with temperature, but never exceeded 0.6. Facultative lecithotrophy, more pronounced during the first zoeal stage of C.tyrrhena, can be regarded as an adaptation of a species whose larvae can respond physiologically to the different temperature–food density combinations encountered in the wide geographical range of their natural habitat. Received: 28 February 1998 / Accepted: 21 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号