首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Functional Properties of Extruded Starch Acetate Blends   总被引:1,自引:0,他引:1  
Starch acetate, with degree of substitution of 2, was blended with 0, 7.5 and 15% polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) or Mater-Bi ZF03U (MBI) and 10%, 13%, or 16% (d.b.) ethanol and twin-screw extruded at 160°C barrel temperature. Physical characteristics of the extrudates, such as radial expansion ratio, unit and bulk densities, and of the mechanical properties, including unit spring index and bulk spring index, were measured. Type of polymer, polymer content, and ethanol content significantly affected the physical characteristics and mechanical properties. The sample extruded with 7.5% PLA and 13% ethanol had the highest expansion ratio and bulk spring index. The sample with 15% MBI and 16% ethanol had the lowest unit density, while the sample with 7.5% PLA and 16% ethanol had lowest bulk denisty. The highest unit spring index was expressed in the sample containing 7.5% PLA and 10% ethanol.  相似文献   

2.
Influence of Fibers on the Mechanical Properties of Cassava Starch Foams   总被引:1,自引:0,他引:1  
The utilization of renewable resources in packaging can provide solutions to ecological problems such as waste quantity. Agricultural resources are alternative raw materials, among which there is starch, a natural polysaccharide that can be used to form resistant foam under wet and warm conditions. The starch foam is obtained by thermo pressing process where cassava starch, water and additives are processed to form a rigid structure by swelling, gelatinization and network formation. Natural fibers can be used to improve the mechanical properties of starch foams. In this project was investigated the influence of the addition of fibers in the levels of 1, 2 and 3% of cassava (short fiber) and 1, 2 and 3% of wheat fiber (powered fiber) in the starch dough. The foams were characterized by physical methods of strength, flexibility, density and by Scanning Electron Microscopy (SEM). The increase in fibers quantity has resulted in foams with higher density and less flexibility, whatever the fiber type. Most fibers quantity did not improve the foam strength. Foam made with 1% of cassava fiber showed higher compression strength; by increasing the percentage quantity there was a decrease on the compression resistance. Foam made with wheat fiber presented a lower result in 2%. The fiber type had no statistical significance in strength, flexibility and density foam. Only the fiber quantity was significant. The results showed that both fibers presented limited dimensions to improve the reinforcement of the starch foams up to 1%.  相似文献   

3.
Elongation properties of extruded cornstarch were improved by blending with glycerol. Further blending of starch-glycerol with polyvinyl alcohol (PVOH) resulted in significant improvements in both tensile strength (TS) and elongation at break. Samples of starch-glycerol without PVOH equilibrated at 50% relative humidity had a TS of 1.8 MPa and elongation of 113%, whereas those containing PVOH had a TS and elongation of 4 MPa and 150%, respectively. Dynamic mechanical analysis (DMA) of starch-glycerol-PVOH blends showed that decreases in glass transition temperatures (T g values) were proportional to glycerol content. Scanning electron microscopy (SEM) of fractured surfaces revealed numerous cracks in starch-glycerol (80:20) samples. Cracks were absent in starch-glycerol (70:30) samples. In both blends, many starch granules were exposed at the surface. No exposed starch granules were visible in blends with added PVOH. Starch-glycerol samples incubated in compost lost up to 70% of their dry weight within 22 days. Addition of PVOH lowered both the rate and extent of biodegradation.  相似文献   

4.
Starch acetates with degrees of substitution (DS) of 0.57, 1.11, 1.68, and 2.23 were prepared and extruded with either water or ethanol. The microstructure, physical properties (radial expansion ratio [RER] and unit density), mechanical properties (spring index [SI] and compressibility), and crystalline structure of the foams were investigated. The functional properties were a function of DS and blowing agent type. When water was used as the blowing agent and DS increased, the foams were pale yellow, with rough and uneven surfaces. The cells were dense, with thick cell walls. Lower RER and SI, with higher DS, were associated with high unit density and compressibility. When ethanol was used as the blowing agent, contrary results were observed. The snow-white foams had smooth surfaces, uniform cells, and smooth cell walls. High RER and SI, and low unit density and compressibility were observed. The changes in SI and compressibility with RER also were examined and found to depend on the type of solvent. A crystalline pattern was observed because of the formation of well-ordered structures during extrusion.  相似文献   

5.
Foam extrusion of biodegradable polyester [poly(butylene adipate-co-terephthalate) (PBAT)] and its blends with maleated thermoplastic starch (MTPS) using a chemical blowing agent was performed. The effect of MTPS and percentage of chemical blowing agent on various foam properties is discussed. In general, an increased amount of PBAT in the foams improves the properties of the foams. The foam samples were characterized by measurements of density, expansion ratio, specific length, compressive strength, resiliency, moisture sorption, and imaging using digital light microscopy. Density, expansion ratio, and specific length measurements show that the best characteristics of lowest density, highest expansion ratio, and highest specific length are exhibited by the PBAT samples. The compressive strength and foam density exhibit a power-law relationship. Greater amounts of PBAT in the samples increase the resiliency and decrease the steady state weight gain during moisture sorption. All samples show regions of unfoamed material when only 3% chemical blowing agent is used, but when 5 and 7% chemical blowing agent is used, the samples exhibit cells throughout the matrix.  相似文献   

6.
A microwave technique was used to prepare foams from different potato starches in granular form, with varying amounts of amylose content, and water. In addition to native potato starch (PN), high amylose potato starch (HAP) and potato amylopectin (PAP) were used, as well as mixtures thereof. In all cases the native crystallinity of starch granules was lost upon microwave treatment and an amorphous material was created. An increased concentration of starch in the initial water dispersion resulted in a less dense foam structure. The potato amylopectin formed open cell foams, whereas increased amylose content, as in native potato starch, yielded a more compact structure with irregular pore shapes. The high amylose potato starch yielded a structure with hardly any porosity. Foaming experiments were done to compare pre-gelatinized and granular starches dispersed in water. The pre-gelatinisation did not affect the pore formation process. These experiments indicated that the molecular architecture of starch polymers is more important for foam formation than starch polymer organization in the granules. Studies of temperature profile and dry matter content during microwave treatment showed that water evaporates more rapidly from a high amylose starch solution than native potato starch and potato amylopectin solutions. Rheological measurements showed that the amylose solution had much lower viscosity than starch and amylopectin. This confirms that polymer – water interaction, such as in amylopectin solution, favours stabilization of bubbles formed upon boiling and evaporation of water, which yields high porosity materials.  相似文献   

7.
8.
Journal of Polymers and the Environment - Starch is the main predominant food reserve in plants. Its characteristics stand out from other carbohydrates providing it with several industrial...  相似文献   

9.
This paper describes the effect of the modification of polyurethane system with palm oil-based polyol on the cell structure and physical?Cmechanical properties of polyurethane foams. Flexible polyurethane foams were prepared by substituting a part of petrochemical polyether-polyol with the palm oil polyol. Selected physical?Cmechanical properties of these foams were examined and compared to the properties of reference foam. The properties such as apparent density, tensile strength, elongation at break, resilience, compressive stress and thermal stability were analyzed. It was found that the modifications of polyurethane formulation with palm oil polyol allow to improve selected properties of final products.  相似文献   

10.
Extrusion-coating experiments were carried out in the pilot line at Tampere Univesity of Technology (Institute of Paper Converting). Typical paper and paperboard substrates were coated with commercially produced 3-hydroxybutyrate/3-hydroxyvalerate. The resulting physical properties of extrusion-coated composite structures were studied. Adhesion between PHB/V and a fiber-based substrate was rather poor, regardless of typically used pretreatments (corona and flame). On the other hand, adhesion was sufficient (mode of failure was fiber tear as the materials were separated) when the substrate was primed with an acrylic-based primer. The surface energy and polarity of PHB/V were much higher than the respective ones of LDPE. Curling of PHB/V was reduced by the addition of wax or tall oil rosin into the base polymer.  相似文献   

11.
The starch-based polymers exhibited shear thinning and elastic nature in rheological characterizations. Thin coatings with narrow neck-in could be produced at fairly high extrusion coating line speeds. Adhesion between the starch-based polymers and paperboard was typically weak. Water vapor barrier of starches was very poor. Soft starch grades had a good pinhole resistance and a good heat sealing performance. Brittle nature of starch caused cracking as the coated paperboards were creased.  相似文献   

12.
Mater-Bi: Properties and biodegradability   总被引:1,自引:0,他引:1  
This paper examines the biodegradability of a new class of materials based on starch and vinylalcohol copolymers, which have been commercialized under the Mater-Bi trademark. Particular attention is given to the biodegradation process for natural and synthetic components of different Mater-Bi grades for film blowing in an aerobic respirometric test, in a SCAS (semicontinuous activated sludge) test, and by submersion in lake water. The correlation between morphology and biodegradation behavior is also considered. Taking into account the prior art on biodegradation of insoluble substrates, a two-step mechanism is proposed for Mater-Bi products.  相似文献   

13.
Soil retrieval, processing and storage procedures can have a profound effect on soil microorganisms. In particular, changes in soil microbial populations may adversely affect the biological activity of a soil and drastically alter the soil's potential to mineralize added substrates. The effects of cold storage on the biodegradation of a series of test polymers was investigated using two soils—a synthetic soil mix (SM-L8) and a field soil (Bridgehampton silt loam) from Rhode Island (RI-1). Biodegradation tests were conducted using freshly prepared/collected soil and again following storage at 4°C for 3 to 8 months. Prior to each biodegradation test, the soils were incubated at 60% water-holding capacity (WHC) and 25°C to rejuvenate the microbial populations; the soils were incubated for periods of 48 h (freshly collected soil) or 25 days (soils stored at 4°C). Soil microbial populations were assessed by enumerating different segments of the population on agar plates containing different selective media. Mineralization of the test polymers (cellulose, poly-3-hydroxybutyrate, and starch acetate, d.s. 1.5) was monitored using standard respirometric techniques. Our results demonstrated that cold storage had a generally negative effect on the soil microbial populations themselves but that its effect on the capacity of the soil microorganisms to degrade the test polymers varied between soils and polymer type. Whereas cold storage resulted in dramatic shifts in the community structure of the soil microbial populations, substantial restoration of these populations was possible by first conditioning the soils at 60% WHC and ambient temperatures for 25 days. Likewise, although the effects of cold storage on polymer mineralization varied with the test polymer and soil, these effects could be largely offset by including an initial 25-day stabilization period in the test.  相似文献   

14.
The interval sorption and diffusion of water vapor were studied for two systems: methylcellulose (MC)/starch and carboxymethylcellulose (CMC)/starch. The diffusion coefficient of water vapor and the Gibbs free energy of swelling of these blends in water were estimated. The Gibbs free energy of mixing starch with the cellulose derivatives was determined using the thermodynamic cycle. CMC/starch was shown to be more compatible than MC/starch. Biodegradation of these systems in the water–soil environment was measured and found to increase with the concentration of starch in its blends with cellulose derivatives.  相似文献   

15.
The objectives of this work were to develop biodegradable trays from cassava starch, sugarcane fibers and Na-montmorillonite (Na-MMT) using a baking process and to study the effects of these components on the physical properties, photo- and bio-degradation of the trays. The sample F20 (produced with 20 g fiber/100 g formulation) showed the maximum yield production (100 %). All formulations resulted in well-shaped trays with densities between 0.1941 and 0.2966 g/cm3. The addition of fibers and Na-MMT resulted in less dense and less rigid trays compared to control samples (only starch). The studied processing conditions resulted in good nanoclay dispersion, leading to the formation of an exfoliated structure. The evaluation of the photo-degradation stability of the trays under UV exposure for 336 h showed that a sample produced with a specific combination of fiber and nanoclay (20 g fiber and 5 g nanoclay/100 g formulation) had the highest loss in stress at break (91 %). Biodegradation assays showed that Control trays (starch) and F20 (20 g fiber/100 g formulation) lost a greater percentage of their weight after 90 days of incubation in soil, with losses of up to 85.50 and 82.70 %, respectively.  相似文献   

16.
Journal of Polymers and the Environment - A comprehensive study was performed on thermoplastic corn starch (TPS)/polystyrene (PS) blend foam to optimize the formulation from the aspects of...  相似文献   

17.
In this paper, we report on the physical properties of films that have been synthesized by using native corn starch (NS) and chemically modified starch (RS4). NS or RS4/PVA blend films were synthesized by using the mixing process and the casting method. Glycerol (GL), sorbitol (SO), and citric acid (CA) were used as additives. The chemically modified starch (RS4) was synthesized by using sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP) as a crosslinker. Then, the RS4 thus synthesized was confirmed by using the pancreatin-gravimetric method, swelling power and an X-ray diffractometer (XRD). Tensile strength (TS), elongation (%E), swelling behavior (SB), and solubility (S) of the films were measured. The result of the measurements indicated the RS4-added film was better than the NS-added film. Especially, the RS4/PVA blend film with CA as an additive showed the physical properties superior to other films.  相似文献   

18.
The physical properties of corn starch loose-fill were examined at various relative humidities (r.h.). After 48 h of storage at both 25 and 50% r.h., only a slight change in the dimension and physical properties of the corn starch loose-fill was apparent. A wet environment (75% r.h. for 48 h), however, caused significant shrinkage and the loss of physical properties. The tensile properties, particularly tensile modulus, sharply increased, while the resilience gradually decreased with storage time. Amorphous X-ray diffraction patterns of corn starch loose-fills were transformed into crystalline patterns due to aging at 75% r.h. after 48 h. These changes were attributed to the structural relaxation, which was accelerated by moisture gain. The T g of corn starch loose-fill decreased with increasing the moisture content in expanded starch. Our proposed model based on Avrami equation was able to describe the time-dependent recrystallization of corn starch by modifying the time-dependent tensile modulus. The growth parameter (n) and time constant (k) for the recrystallization process of corn starch loose-fill were about 3.2 and 8.87 × 10–18 s–1, respectively. If the growth parameter of 3.2 is considered, spherulitic growth of crystallization occurred in the corn starch loose-fill in the wet environment.  相似文献   

19.
Methylenediphenyl diisocyanate was found to improve the interfacial interaction between poly(lactic acid)(PLA) and granular starch. The objective of this research was to study the effect of starch moisture content on the interfacial interaction of an equal-weight blend of wheat starch and PLA containing 0.5% methylenediphenyl diisocyanate by weight. Starch moisture (10% to 20%) had a negative effect on the interfacial binding between starch and PLA. The tensile strength and elongation of the blend both decreased as starch moisture content increased. At 20% moisture level, the starch granules embedded in the PLA matrix were observed to be swollen, resulting in poor strength properties and high water absorption by the blend.  相似文献   

20.
This paper deals with the mechanical properties and degree of swelling (DS) of starch/PVA blend film with the functional groups i.e., hydroxyl and carboxyl group, of additives. Starch/PVA blend films were prepared by using the mixing process. Glycerol (GL) with 3 hydroxyl group, sorbitol (SO) with 6 hydroxyl group, succinic acid (SA) with 2 carboxyl group, malic acid (MA) with 1 hydroxyl and 2 carboxyl group, tartaric acid (TA) with 2 hydroxyl and 2 carboxyl group and citric acid (CA) with 1 hydroxyl and 3 carboxyl group were used as additives. The results of measured tensile strength (TS) and elongation (%E) verified that both hydroxyl and carboxyl group as a functional groups increased the flexibility and strength of the film. Values of DS for GL-added and SA-added films were low. However, DS values of the films added MA, TA or CA with both hydroxyl and carboxyl group were comparatively high. When the film was dried at low temperature, the properties of the films were evidently improved. The reason is probably because the hydrogen bonding was activated at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号