首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dual-isotope method was developed to measure grazing rates and food preferences of individual species of heterotrophic dinoflagellates from natural populations, collected from the Slope, Gulf Stream, and Sargasso Sea and from a transect from Iceland to New England, in 1983. The isotope method measures the grazing rates of microzooplankton which cannot be separated in natural populations on the basis of size. Tritiated-thymidine and 14C-bicarbonate were used to label natural heterotrophic and autotrophic food, respectively. Nine oceanic dinoflagellate species in the genera Protoperidinium, Podolampas, and Diplopsalis fed on both heterotrophic and autotrophic food particles with clearance rates of 0.4 to 8.0 l cell-1 h-1, based on 3H incorporation, and 0.0 to 28.3 l cell-1 h-1, based on 14C incorporation. Two dinoflagellate species, Protoperidinium ovatum and Podolampas palmipes, fed only on 3H-labelled food particles. Several species of dinoflagellates fed on bacteria (<1 m) which had been prelabelled with 3H-thymidine. The clearance rates of heterotrophic dinoflagellates and ciliates were similar and within the range of tintinnid ciliate clearance rates reported in the literature. As heterotrophic dinoflagellates and ciliates can have comparable abundances in oceanic waters, we conclude that heterotrophic dinoflagellates may have an equally important impact as microheterotrophic grazers of phytoplankton and bacteria in oceanic waters.Partially supported by a grant from the National Science Foundation, OCE-81-17744  相似文献   

2.
Moerisia lyonsi Boulenger (Hydrozoa) medusae and benthic polyps were found at 0 to 5‰ salinity in the Choptank River subestuary of Chesapeake Bay, USA. This species was introduced to the bay at least 30 years before 1996. Medusae and polyps of M. lyonsi are very small and inconspicuous, and may occur widely, but unnoticed, in oligohaline waters of the Chesapeake Bay system and in other estuaries. Medusae consumed copepod nauplii and adults, but not barnacle nauplii, polychaete and ctenophore larvae or tintinnids, in laboratory experiments. Predation rates on copepods by medusae increased with increasing medusa diameter and prey densities. Feeding rates on copepod nauplii were higher than on adults and showed no saturation over the range of prey densities tested (1 to 64 prey l−1). By contrast, predation on copepod adults was maximum (1 copepod medusa−1 h−1) at 32 and 64 copepods l−1. Unexpectedly, M. lyonsi colonized mesocosms at the Horn Point Laboratory during the spring and summer in 4 years (1994 to 1997), and reached extremely high densities (up to 13.6 medusae l−1). Densities of copepod adults and nauplii were low when medusa densities were high, and estimated predation effects suggested that M. lyonsi predation limited copepod populations in the mesocosms. Polyps of M. lyonsi asexually produced both polyp buds and medusae. Rates of asexual reproduction increased with increasing prey availability, from an average total during a 38 d experiment of 9.5 buds polyp−1 when each polyp was fed 1 copepod d−1, to an average total of 146.7 buds polyp−1 when fed 8 copepods d−1. The maximum daily production measured was 8 polyp buds and 22 medusae polyp−1. The colonizing potential of this hydrozoan is great, given the high rates of asexual reproduction, fairly wide salinity tolerance, and existence of a cyst stage. Received: 29 October 1998 / Accepted: 3 March 1999  相似文献   

3.
The toxicological impacts of the increasing number of synthetic compounds present in the aquatic environment are assessed predominantly in laboratory studies where test organisms are exposed to a range of concentrations of single compounds. Protozoan cells are often used as bioindicators for the presence of xenobiotic compounds. In this article, we describe the inhibitory effect of a synthetic phosphoramidate derivative at different concentrations (40, 60, and 80?µmol?L?1) on Paramecium sp., affecting its growth (proliferation) in concentration-dependent manner, as well as the generation time and response percentage. The LC50 value determined for these protozoa was estimated at 60?µmol?L?1 on 24?h of exposure. The respiratory metabolism of protozoan is perturbed at three concentrations, noting that the oxygen consumption was significantly increased at high concentrations after 18?h of exposure. In addition, the data can be used as reference values in further testing with other pesticides.  相似文献   

4.
The kinetics and efficiency of sterol production and bioconversion of phytosterols in two heterotrophic protists Oxyrrhis marina and Gyrodinium dominans were examined by feeding them two different algal species (Rhodomonas salina and Dunaliella tertiolecta) differing in sterol profiles. R. salina contains predominantly brassicasterol (?99%) and <2% cholesterol. The major sterols in D. tertiolecta are ergosterol (45–49%), 7-dehydroporiferasterol (29–31%) and fungisterol (21–26%). O. marina fed R. salina metabolized dietary brassicasterol to produce 22-dehydrocholesterol and cholesterol. O. marina fed D. tertiolecta metabolized dietary sterols to produce cholesterol, 22-dehydrocholesterol, brassicasterol and stigmasterol. G. dominans fed either R. salina or D. tertiolecta metabolized dietary sterols to make cholesterol, brassicasterol and a series of unknown sterols. When protists were fed R. salina, which contains cholesterol, the levels of cholesterol were increased to a magnitude of nearly 5- to 30-fold at the phytoplankton-heterotrophic protist interface, equivalent to a production of 172.5 ± 16.2 and 987.7 ± 377.7 ng cholesterol per mg R. salina carbon consumed by O. marina and G. dominans, respectively. When protists were fed D. tertiolecta, which contains no cholesterol, a net production of cholesterol by the protists ranged from 123.2 ± 30.6 to 871.8 ± 130.8 ng per mg algal C consumed. Cholesterol is not only the dominant sterol, but a critical precursor for many physiologically functional biochemicals in higher animal. As intermediates, these heterotrophic protists increase the amount of cholesterol at the phytoplankton–zooplankton interface available to higher trophic levels relative to zooplankton feeding on algae directly.  相似文献   

5.
We examined feeding by larval weakfish, Cynoscion regalis (Bloch and Schneider), in laboratory experiments conducted during the 1991 spawning season. under natural conditions weakfish larval development is ca. 3 wk, and we ran separate experiments with larvae of five different ages (5, 8, 11, 14, and 17 d post-hatching). We used two different size classes of rotifers (Brachionus plicatilis) and brine shrimp nauplii (Artemia sp.) as prey organisms. Contrary to results of previous research, weakfish larvae did not select prey based on size alone. When prey abundance was above 100 itemsl-1 weakfish, larvae always chose large rotifers (length = 216 m) over small rotifers (length = 160 m). At 11 d post-hatching, larvae switched their diet from large rotifers to small brine shrimp nauplii (length = 449 m); however, when fed small rotifers and small brine shrimp nauplii the change in diet occurred at 14 d post-hatching. This pattern of selectivity was maintained in each larval age class. Early-stage larvae (5 and 8 d post-hatching) did not feed selectively when prey abundance was less than 100 itemsl-1. Late-stage larvae (17 d post-hatching) fed selectively at abundances ranging from 10 to 10000 items-1. Lwimming speeds of prey items, which ranged from 1 to 6 mms-1, had no consistent effect on prey selection. These results suggest that weakfish larvae are able to feed selectively, that selectivity changes as larvae age, and that selectivity is also influenced by prey abundance.  相似文献   

6.
Body size has great influence on feeding, reproduction, and ecological importance. This study measures growth, reproduction, and feeding for several northeastern Pacific intertidal invertebrates that have indeterminate growth. In all species studied, linear size (length, diameter) showed asymptotic growth fit by the von Bertalanffy growth function, supporting the notion that less energy is allocated to growth with age because of increased reproduction. However, these same species displayed a continuous, roughly linear increase in volume with age. Both reproductive output and food intake were shown to scale proportionally with volume. This indicates that some species with indeterminate growth do not reduce energy allocation to growth with age but instead display continuous volumetric growth that facilitates increases in feeding rate and reproductive output with age and size. A simple allometric model is proposed to describe constant volumetric growth rates and linear increases in reproduction with age.  相似文献   

7.
Mesocosm experiments coupled with dilution grazing experiments were carried out during the phytoplankton spring bloom 2009. The interactions between phytoplankton, microzooplankton and copepods were investigated using natural plankton communities obtained from Helgoland Roads (54°11.3′N; 7°54.0′E), North Sea. In the absence of mesozooplankton grazers, the microzooplankton rapidly responded to different prey availabilities; this was most pronounced for ciliates such as strombidiids and strobilids. The occurrence of ciliates was strongly dependent on specific prey and abrupt losses in their relative importance with the disappearance of their prey were observed. Thecate and athecate dinoflagellates had a broader food spectrum and slower reaction times compared with ciliates. In general, high microzooplankton potential grazing impacts with an average consumption of 120% of the phytoplankton production (P p ) were measured. Thus, the decline in phytoplankton biomass could be mainly attributed to an intense grazing by microzooplankton. Copepods were less important phytoplankton grazers consuming on average only 47% of P p . Microzooplankton in turn contributed a substantial part to the copepods’ diets especially with decreasing quality of phytoplankton food due to nutrient limitation over the course of the bloom. Copepod grazing rates exceeded microzooplankton growth, suggesting their strong top-down control potential on microzooplankton in the field. Selective grazing by microzooplankton was an important factor for stabilising a bloom of less-preferred diatom species in our mesocosms with specific species (Thalassiosira spp., Rhizosolenia spp. and Chaetoceros spp.) dominating the bloom. This study demonstrates the importance of microzooplankton grazers for structuring and controlling phytoplankton spring blooms in temperate waters and the important role of copepods as top-down regulators of microzooplankton.  相似文献   

8.
J. D. Dodge 《Marine Biology》1977,40(4):327-336
The south-western quarter of the North Sea (between the Wash and the River Tyne) has been investigated for the presence of dinoflagellates. Extensive net surveys were carried out in March, May and June 1971 and a number of other collections were made in the area. North of Flamborough Head, the spring bloom of diatoms was succeeded by a considerable growth of dinoflagellates, of which Dinophysis norvegica was the most abundant organism. Maximum counts of over 28 million dinoflagellates per m3 were recorded. Distribution charts are given for the most common species. A total of 61 species was found during the course of the survey.  相似文献   

9.
Feeding, growth and bioluminescence of the thecate heterotrophic dinoflagellate Protoperidinium huberi were measured as a function of food concentration for laboratory cultures grown on the diatom Ditylum brightwellii. Ingestion of food increased with food concentration. Maximum ingestion rates were measured at food concentrations of 600 g C l-1 and were 0.7 g C individual-1 h-1 (1.8 D. brightwelli cells individual-1 h-1). Clearance rates decreased asymptotically with increasing food concentration. Maximum clearance rates at low food concentration were ca. 23 l ind-1 h-1, which corresponds to a volume-specific clearance rate of 5.9x105 h-1. Cell size of P huberi was highly variable, with a mean diameter of 42 m, but no clear relationship between cell size and food concentration was evident. Specific growth rates increased with food concentration until maximum growth rates of 0.7 d-1 were reached at a food concentration of 400 g C l-1 (1000 cells ml-1). Food concentrations as low as 10 g C l-1 of D. brightwellii (25 cells ml-1) were able to support growth of P. huberi. The bioluminescence of P. huberi varied with its nutritional condition and growth rate. Cells held without food lost their bioluminescence capacity in a matter of days. P. huberi raised at different food concentrations showed increased bioluminescence capacity, up to food concentration that supported maximum growth rates. The bioluminescence of P. huberi varied over a diel cycle, and these rhythmic changes persisted during 48 h of continuous darkness, indicating that the rhythm was under endogenous control.  相似文献   

10.
The biology of a population of the cardinalfish Apogon rueppellii has been studied over several years (1977–1983) in the Swan Estuary in south-western Australia, using ramples collected monthly from the shallows by beach seine and from various depths by otter trawl. While the life cycle of this species typically lasts for one year, at the end of which time the mean length is 50 to 60 mm, some individuals survive for a further year and attain lengths up to 104 mm. A. rueppellii shows a marked tendency to move offshore into deeper water during the winter months. This tendency is more pronounced in the 1+ than in the 0+ year class and in larger than smaller 0+ individuals. An inshore movement of A. rueppellii in the spring is followed by spawning and by oral brooding by the males, which leads to the recruitment of large numbers of a new 0+ year class on to the banks during the summer. The offshore movement is correlated with changes in salinity and temperature. The larger catches taken by otter trawl during the day than at night indicate that A. rueppellii exhibits a diel pattern of activity. Mean fecundity ranged from 70 in the 45 to 49 mm size class to 345 in the 90 to 94 mm size class. Measurements of fecundity and the number of oral-brooded eggs demonstrated that the majority of the eggs released by the female are collected and incubated by the males. Copepods are ingested in relatively greater amounts by small than by large A. rueppellii, whereas the reverse situation occurs with larger crustaceans, polychaetes and small fish. The presence of greater amounts of copepods in the diet during the day and of amphipods at night probably reflects the diel activity patterns of the prey.  相似文献   

11.
12.
Summary Relationships between spacing behavior and growth rates were investigated in a field experiment with juvenile lizards, Anolis aeneus. The behavioral variable most closely related to juvenile growth was distance moved per unit time. This variable had a curvilinear relationship with growth, such that juveniles moving approximately 400 cm/h grew more rapidly than those traveling either larger or shorter distances per unit time. Daily fluctuations in arthropod abundance were also related to growth rates, with restricted growth during periods of low food availability. Temporal fluctuations in prey and distance traveled per unit time had independent effects on growth; together these two variables accounted for 43% of the variance in growth rate for the juveniles in this study.Territory size, overlap and social status appeared to affect growth indirectly, by influencing distance traveled per unit time. Optimal travel distances of around 400 cm/h were most likely when a juvenile had a relatively exclusive territory of about 0.5 m2. High ranking juveniles were more apt to achieve this spacing pattern than were low ranking juveniles, but some high ranking juveniles had very large territories, extensive overlap with subordinates, supraoptimal travel distances and relatively low growth rates. Low ranking juveniles tended to fall into two groups: subordinates, with a small home range overlapping that of a more dominant individual and low travel distances, and floaters, with a large home range overlapping several more dominant individuals and high travel distances. Although a few low ranking juveniles achieved travel distances permitting high growth rates, most had either supra or suboptimal travel distances and relatively low growth rates.  相似文献   

13.
Summary Feeding rates of five captive red crossbills (Loxia curvirostra) were measured when they were foraging alone, and in flocks of two or four on three seed dispersion patterns. On the most strongly clumped seed dispersion, individuals had higher mean feeding rates and the smallest probability of starvation when in flocks of two than when alone or in flocks of four. Individuals in flocks of four had higher feeding rates on the weakly clumped seed dispersion than on the uniform and more clumped seed dispersions; there were no food finding benefits gained from flocking on the uniform seed dispersion and aggression increased as food became more clumped. Most recent work has assumed that flocking results in higher feeding rates only because time spent vigilant is reduced. Crossbills, however, did not visit more cones per unit time as flock size increased, as would be expected if less time was spent vigilant. Thus, any reductions in vigilance as flock size increased were countered by increases in other behaviours, such as those related to aggression. Consequently, the higher mean feeding rates of crossbills in flocks than when solitary is not attributable to reduced vigilance. The increase in mean and the decline in variance of feeding rates occurred because crossbills in flocks found good patches earlier, and possible by spending less time assessing poor patches.  相似文献   

14.
Growth rates were determined for copepodites of the genera: Acartia, Centropages, Corycaeus, Oithona, Paracalanus, Parvocalanus and Temora in nearshore waters of Jamaica from in situ microcosm incubations. At these high local temperatures (∼28 °C), total copepodite development time was as short as 4 to 5 d. Mean instantaneous growth rates (g) ranged from as high as 1.2 d−1 to as low as 0.1 d−1. In general, cyclopoid copepods appeared to grow more slowly than calanoids of the same size. Enhancement of resources by nutrient addition caused a 32% increase in growth rates in experiments from a mesotrophic site, but only a 17% increase at a more eutrophic site. Additionally, copepodites at both sites showed faster development and generally larger size at stage in response to nutrient addition. Growth rates were positively related to chlorophyll concentration in the >2 μm size-fraction. A significant relationship of growth rate to body size (r 2 = 0.45) emerged across a wide range of trophic status, but it was confounded with resource availability. It appears that growth in tropical copepod copepodites may be frequently limited by resources in a size-dependent manner. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

15.
In response to a call from the US National Research Council for research programs to combine their data to improve sea turtle population assessments, we analyzed somatic growth data for Northwest Atlantic (NWA) loggerhead sea turtles (Caretta caretta) from 10 research programs. We assessed growth dynamics over wide ranges of geography (9–33°N latitude), time (1978–2012), and body size (35.4–103.3 cm carapace length). Generalized additive models revealed significant spatial and temporal variation in growth rates and a significant decline in growth rates with increasing body size. Growth was more rapid in waters south of the USA (<24°N) than in USA waters. Growth dynamics in southern waters in the NWA need more study because sample size was small. Within USA waters, the significant spatial effect in growth rates of immature loggerheads did not exhibit a consistent latitudinal trend. Growth rates declined significantly from 1997 through 2007 and then leveled off or increased. During this same interval, annual nest counts in Florida declined by 43 % (Witherington et al. in Ecol Appl 19:30–54, 2009) before rebounding. Whether these simultaneous declines reflect responses in productivity to a common environmental change should be explored to determine whether somatic growth rates can help interpret population trends based on annual counts of nests or nesting females. Because of the significant spatial and temporal variation in growth rates, population models of NWA loggerheads should avoid employing growth data from restricted spatial or temporal coverage to calculate demographic metrics such as age at sexual maturity.  相似文献   

16.
The phosphorus metabolism of Pyrocystis noctiluca Murray (Schuett) 1886 has characteristics which may enhance its potential for success in orthophosphate impoverished waters. The steady-state phosphate uptake rates were equal in the light and dark, and were directly proportional to both the phosphorus cell quota and the cell division rate. In contrast, nutrient-saturated uptake rates were multiphasic, faster in the light than the dark, 2 to 4 orders of magnitude greater than steady-state rates, and were inversely proportional to both the phosphorus cell quota and the cell division rate. These uptake characteristics suggest that P. noctiluca may take up phosphate coincidently at their typically low ambient concentrations as well as to exploit episodic nutrient events in nature. Cell division rates were a hyperbolic function of the ambient orthophosphate concentration. The shortest doubling time was 8.7 d, the phosphate concentration at half the maximum division rate was 0.15 M and the threshold, concentration for cell division was ca 0.05 M PO 4 3- . Division rates of P. noctiluca in the ocean are much faster than predicted from the measured ambient orthophosphate concentrations. Since this dinoflagellate has high naturally occurring alkaline phosphatase activities, and can utilize organic-P compounds, we suggest that organic-P can be as important as orthophosphate in supporting the observed division rates of P. noctiluca in the sea.  相似文献   

17.
Despite extensive research on the effects of habitat fragmentation, the ecological mechanisms underlying colonization and extinction processes are poorly known, but knowledge of these mechanisms is essential to understanding the distribution and persistence of populations in fragmented habitats. We examined these mechanisms through multiseason occupancy models that elucidated patch-occupancy dynamics of Middle Spotted Woodpeckers (Dendrocopos medius) in northwestern Spain. The number of occupied patches was relatively stable from 2000 to 2010 (15-24% of 101 patches occupied every year) because extinction was balanced by recolonization. Larger and higher quality patches (i.e., higher density of oaks >37 cm dbh [diameter at breast height]) were more likely to be occupied. Habitat quality (i.e., density of large oaks) explained more variation in patch colonization and extinction than did patch size and connectivity, which were both weakly associated with probabilities of turnover. Patches of higher quality were more likely to be colonized than patches of lower quality. Populations in high-quality patches were less likely to become extinct. In addition, extinction in a patch was strongly associated with local population size but not with patch size, which means the latter may not be a good surrogate of population size in assessments of extinction probability. Our results suggest that habitat quality may be a primary driver of patch-occupancy dynamics and may increase the accuracy of models of population survival. We encourage comparisons of competing models that assess occupancy, colonization, and extinction probabilities in a single analytical framework (e.g., dynamic occupancy models) so as to shed light on the association of habitat quality and patch geometry with colonization and extinction processes in different settings and species.  相似文献   

18.
19.
Egg production was measured in 17 species of copepods from the genera Acartia, Calanopia, Centropages, Clausocalanus, Corycaeus, Eucheata, Euterpina, Oithona, Oncaea, Paracalanus, Parvocalanus, Temora and Undinula in Jamaican waters. At the high local temperatures (∼28 °C), mean egg production ranged from 3.2 to 88 eggs female–1 d–1, and instantaneous female growth (g, as egg production) ranged from 0.04 to 0.87 d–1. Female growth was positively related to ambient chlorophyll concentration (r 2 = 0.44) and negatively to female body size (r 2 = 0.29). Together these two variables explained 60% of the variation in growth. When quadratic terms for chlorophyll and a term for interaction of body size and chlorophyll were introduced, 82% of the variance in growth rate was explained. Egg production rates represent an extension of the resource and size-dependent relationship established for copepodites. In smaller species (<3.5 μg), egg production was comparable to prior copepodite somatic growth; in larger species (>3.5 μg), egg production is compromised at lower resource concentrations than copepodite somatic growth. Thus, it appears that egg production in tropical copepods may be frequently limited by resources in a size-dependent manner. Under conditions where growth is resource limited, we caution against the application of egg production rates for the calculation of total copepod production. Received: 30 May 1997 / Accepted: 13 May 1998  相似文献   

20.
The time periods from exhausion of the yolk to the age of irreversible starvation for Pacific herring Clupea harengus pallasi larvae were 8.5, 7.0 and 6.0 d at 6°, 8° and 10°C, respectively. These periods are within the range perviously measured for Atlantic herring larvae and other temperature zone fish species; they are long compared to the periods for tropical species. The variation in the length of this period is due almost entirely to temperature; the natural logarithm of the time period from fertilization to irreversible starvation is highly correlated (r=0.91) with the mean rearing temperature for 25 species of pelagic marine fish larvae. The rates of growth and mortality, measured for 26 experimental populations of Pacific herring larvae reared at 6°, 8° and 10°C and ten ages of delayed first feeding, decreased and increased, respectively with increasing age of first feeding and increasing temperature. These rates, adjusted for the effects of rearing conditions, were compared with the rates for natural populations of herring larvae. Growth is generally faster in the sea than in experimental enclosures. Two of the eleven estimates of natural mortality rate were high enough to indicate possible catastrophic mass starvation. This is consistent with Hjort's critical period concept of year class formation and it suggests that mass starvation occurs in 18 to 36% of the natural populations of first feeding herring larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号