首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
针对LNG储罐泄漏气体扩散模拟分析过程中存在计算和分析过程复杂的问题,选取适当的气体扩散模型,对危险气体的扩散进行模拟和分析,绘制蒸汽扩散UFL(爆炸上限)、LFL(爆炸下限)、1/2LFL浓度等值线图,实现蒸汽扩散伤害分区的准确划分,提高了计算速率和精确度。并利用程序模拟分析了风速、地表粗糙度、泄漏速率等因素对LNG泄漏气体扩散影响。研究结果表明,当风速方向和泄漏源泄漏方向相同时,蒸汽扩散距离和危害范围随风速增大呈减小趋势;蒸汽在下风向扩散距离随着地表粗糙度的增大而减小;扩散距离和危害范围随泄漏速率的增大而增大。  相似文献   

2.
LNG储罐泄漏危险性影响因素分析   总被引:2,自引:0,他引:2  
LNG(液化天然气)泄漏后产生大量的蒸汽,蒸汽的扩散受液池尺寸、泄漏区域地面类型、环境条件的影响,为了研究以上因素对LNG蒸汽扩散的影响,以方便采取事故预防措施,采用ALOHA软件对以上因素影响甲烷UFL(爆炸上限)、LFL(爆炸下限)、1/2LFL在下风向扩散的最远距离进行了定量分析,划分了可能发生火灾或者爆炸的危险区域,得出LNG泄漏到水面、混凝土地面、湿沙层、干沙层上危险性依次降低。选取水面温度分别为5℃、10℃、15℃、25℃,围堰尺寸分别为400 m2、600 m2、800 m2、1 000 m2,环境温度分别为-10℃、0℃、10℃、20℃、30℃、40℃时,对下风向甲烷体积分数分布进行定量分析,结果表明,甲烷UFL、LFL、12LFL扩散最远距离随水面温度、围堰尺寸、环境温度增加而逐渐增大。  相似文献   

3.
为研究环境风速对液化天然气(LNG)泄漏扩散过程的影响,采用Fluent建立LNG连续泄漏计算流体力学模型,开展不同风速下LNG泄漏扩散过程的数值模拟研究。结果表明,LNG泄漏扩散分为扩散初期、扩散中期、扩散后期3个阶段,扩散过程中LNG从低温重气逐渐转变成轻质气体。环境风速对气云的扩散主要体现在:低于5级风时,云团以两侧卷吸为主,气云表现为"叶状分叉"、中间低两端高,此时气云横风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而增大;而高于5级风时,云团以顶部卷吸为主,气云表现为云团坍塌、中间高两端低,此时气云垂直风向扩散较快,甲烷扩散距离与冻伤距离随风速增大而减小。初步建立了LNG蒸气云爆炸风险范围与冻伤区域和泄漏时间、环境风速的函数关系,可为爆炸风险区域和低温冻伤区域的预测提供理论支撑。  相似文献   

4.
基于相似性原理,在不同坡度(0°、20°、30°、45°)及不同地面粗糙度(木质地面、土质地面)条件下进行了小尺寸的CO2泄漏试验,研究坡度和地面粗糙度对CO2泄漏扩散的影响,为全尺寸现场CO2泄漏试验提供参考。结果表明:坡度的存在对CO2扩散产生了较为明显的影响,坡度越大,斜坡上体积分数梯度越大,坡度小于20°时,对CO2扩散影响几乎无影响,坡度大于30°时,影响开始凸显;与无坡度的平面扩散相比,斜坡下方出现明显的CO2聚集区域,坡度越大,聚集现象越明显,体积分数分布越平均;地面粗糙度的增加使整体CO2体积分数有明显的上升,泄漏口附近(0.25 m)体积分数上升最为明显,整个泄漏场浓度分布更加平均,浓度梯度更小;此外,地面粗糙度的增加一定程度上抑制了泄漏过程的卷吸效应。  相似文献   

5.
为分析和预测天然气泄漏的扩散距离、扩散面积及扩散后的不动火区域,有效控制事故发生及降低事故后果,以某天然气储罐为例,对天然气瞬时泄漏的扩散规律进行了数值仿真。首先,确定适用于轻气的高斯烟团模型;然后,基于高斯烟团模型进行仿真分析,绘制天然气瞬时泄漏扩散的等质量浓度曲线和动火燃爆区域;第三,分析泄漏量、大气稳定度、地表粗糙度等因素对天然气扩散的影响,并分别确定不同条件下的动火燃爆区域;最后,基于数值仿真分析结果,提出天然气泄漏后的应急疏散和救护措施。结果表明:天然气扩散距离和面积随泄漏量增大而增大;大气越稳定,扩散的距离和范围越大;扩散距离随地面粗糙度增大而减小。  相似文献   

6.
在泄漏速度为20、30、50 m/s,环境温度为10、20、30、40℃,地面粗糙度为0.55、0.65、0.71 mm的条件下,利用FLUENT软件进行模拟仿真计算。得到LPG罐车发生泄漏时LPG浓度分布情况,结合LPG火灾爆炸极限,分析泄漏扩散所涉及区域内可能爆炸的范围。研究结果表明,泄漏速度越快,云团扩散速率增大,云团扩散范围越广,爆炸危险性区域增大。风速越大,增大了云团扩散速率,泄漏扩散范围增大,爆炸危险性区域减小。地面粗糙度越大,减缓了云团扩散速率,云团扩散范围减小,爆炸危险性区域增大。  相似文献   

7.
对苯在大气中的扩散进行数值模拟,估测泄漏气体污染范围、各阶段苯的泄漏速率,以及发生池火灾时热辐射的危害范围等,量化了大气温度、地面风速、地面粗糙度(地形、建筑因素)等环境因素对不同危险性级别区域分布的影响,得到了苯扩散距离随大气温度、地面风速以及地面粗糙度(地形、建筑因素)的变化曲线,探讨了在不同环境因素作用下苯的大气扩散规律,并对研究结果进行分析。  相似文献   

8.
为研究环氧乙烷在不同因素影响下扩散规律及其毒性影响范围,以某厂环氧乙烷储罐泄漏事故为背景,对环氧乙烷泄漏扩散规律进行模拟分析。运用FLUENT软件,模拟环氧乙烷随泄漏速率、自然风速和地面粗糙度变化时的动态扩散变化规律。模拟结果表明:1)泄漏速率越快,毒害范围越大,并且在一定条件下,泄漏速率每增加2.5 kg/s,特别严重毒害范围(灰区)最远距离会在下风向增加60~80 m,比较严重毒害范围(黑区)最远距离会在下风向增加20~40 m;2)自然风速越快,灰区范围会变得越来越小,但黑区的毒害范围会扩散得更大,当风速为8 m/s时达到最大值,风速超过8 m/s时,风速的增加反而会使黑区范围变小;3)地面粗糙度越大,对环氧乙烷扩散的阻碍作用越大,黑区范围变小,但地面粗糙度大于4 m后,其对扩散作用的影响与4 m时近乎一致。研究结果对环氧乙烷储罐泄漏事故的预防,应急疏散和救援具有重要的指导意义。  相似文献   

9.
含硫天然气净化厂硫化氢泄漏分析及对策   总被引:1,自引:1,他引:0  
以川东北某含硫天然气净化厂为对象,通过分析该净化厂的处理工艺及可能造成泄漏的各种原因,确定了硫化氢泄漏危险较高的生产单元。通过工艺压力、流量、物料组分的比对,选取了脱硫单元原料气和硫磺回收单元酸性气作为模拟泄漏物料。对该厂所在地的气象条件和厂区的地形地貌进行了调查,净化厂当地近5年风速、云量统计表明低风速和多云为主导天气,将D1.5m/s作为模拟硫化氢泄漏扩散的典型气象条件。采用了美国石油学会(API)推荐地面粗糙度长度。运用PHAST软件计算了在典型气象条件下通过3种不同孔径泄漏1 min,5min和30min,形成的立即危及生命或健康(IDLH)范围。在典型气象条件下IDLH的下风向边界距离在41m至1190m范围内,以硫磺回收单元的大孔径泄漏为最远。以小孔泄漏为例模拟并讨论了风速、大气稳定度对硫化氢扩散的影响。为降低H2S泄漏风险提出了在线监测及联锁系统设置的要求,对避免和减少硫化氢中毒伤亡事故具有指导意义。  相似文献   

10.
以CO_2为对象,通过敞开空间水幕稀释阻挡CO_2扩散试验,分析了CO_2泄漏时的体积分数分布,对水幕稀释阻挡非水溶性重气扩散的影响因素进行了无量纲分析,主要针对泄漏源高度、泄漏源距水幕距离、水幕流量及泄漏流量进行研究,通过研究各影响因素推出了无量纲准数及水幕的稀释效率。定义了两个无量纲量:无量纲流量K=Q/q和无量纲距离Ω=H/L。结果表明:K不变时,随泄漏流量增大,水幕后CO_2的体积分数变大。泄漏流量相同时,测试点处CO_2体积分数随K增大而减小。泄漏流量每增加1 m3/h,为保持水幕后CO_2的体积分数不变,K需要增加0.25。当越接近0.6时,水幕后CO_2的体积分数越小,稀释效果越好。最后,基于无量纲分析结果,针对非水溶性重气泄漏扩散现场,提出了水幕设置建议。  相似文献   

11.
为研究大尺寸、全场景下LNG船舶卸货作业过程中的泄漏爆炸风险,构建某LNG接收站及其周边20.5 km2的区域场景模型,采用FLACS软件数值模拟LNG泄漏扩散、气云爆炸的演化过程。结果表明:LNG从卸料臂处以满输速率持续泄漏5 min,最大液池面积17 047 m2,最大汽化速率350 kg/m3,遇点火源发生气云爆炸,爆炸持续时间12 s,产生最高爆炸火球340 m和最大爆炸超压0.25 MPa,形成半径380 m轻伤区、150 m重伤区和60 m死亡区。  相似文献   

12.
为定量分析半封闭空间内液化天然气(LNG)泄漏后果,利用计算流体力学(CFD)软件FLUENT,对不同条件下的“冷箱”内LNG泄漏后扩散与爆炸过程进行了模拟。结果表明:无论通风与否,危险区域(甲烷体积分数为5%~15%)一直存在,但通风时该区域比无通风时小; LNG泄漏后会导致箱内温度降低,且泄漏量越大温度下降越低,但通风在一定程度上能减小温降; 当危险区域最大时,发生爆炸产生的超压最大,对于泄漏量小的情况,通风能减小爆炸压力; 障碍物的存在会增大爆炸压力,研究中的最大爆炸超压为158 kPa,可对设备与人员造成严重危害,故在设计“冷箱”时须提出相应的强度要求。研究方法与结果对于与“冷箱”类似的受限空间安全设计与风险评估有指导意义。  相似文献   

13.
泡沫灭火剂在扑灭液体火灾中起到重要作用,关于低温液体蒸气云扩散控制的研究也逐渐得到应用。通过小尺寸模拟试验验证高倍泡沫加速泄漏LNG扩散的有效性,设计并进行了低温液体自然蒸发和高倍泡沫覆盖低温液体两个对照试验,测量了竖直方向上10个高度处的温度及装置整体质量,从而获取了低温液体蒸气到达泡沫层顶端时温度及蒸发速率的变化情况。结果表明,与未添加泡沫的情况对比,高倍泡沫的覆盖使泄漏低温液体在1 800 s内的蒸发量减少了6.4%,如果时间更长则减少的比例更多,且蒸发出的低温液体穿过泡沫层后蒸气温度可达0℃左右,而未添加泡沫时同等高度处蒸气温度为-75℃左右。0℃时,LNG蒸气密度已明显小于空气密度,此温度下LNG蒸气会迅速向上扩散,而不至在地表积聚,由此证明高倍泡沫能够加速泄漏低温液体蒸气向上扩散,减小了低温液体蒸气在地面积聚并引发火灾爆炸事故的可能性,从而证实了高倍泡沫加速泄漏LNG扩散的有效性。  相似文献   

14.
室内天然气意外泄漏后极易引起火灾爆炸事故,为避免或减少其事故的发生,得到泄漏后气体扩散规律及爆炸危险浓度分布状况,利用Fluent软件对某12m×7m厂房在不同泄漏孔径下泄漏扩散情况进行了数值模拟.分析风速为1 m/s时,泄漏孔径对甲烷气体扩散的影响,并将燃气管道泄漏速率的模拟结果与理论预测值进行对比分析.结果表明:所建立的数学模型和设置参数是合理的;在不同泄漏孔径下,监测受限空间内5个不同点气体分布状况,得出在风速和壁面的影响下,排气扇附近相对较危险,窗户下方相对较安全.  相似文献   

15.
为探究甲烷体积分数对煤粉爆炸过程的影响,并掌握甲烷-煤粉爆炸火焰传播特征,通过粒度分析仪和同步热分析仪研究2种煤粉样品的粒径大小和热解过程。利用1 500 mm×80 mm×80 mm的半开口竖直燃烧管道,探究不同甲烷体积分数下,中位粒径分别为65和25μm烟煤粉的火焰传播特性,分析甲烷体积分数对甲烷-煤粉复合火焰结构、温度和速度的影响。结果表明:25μm煤粉比65μm煤粉的火焰更加明亮,甲烷体积分数的增加对65μm煤粉火焰有更强的促进作用;当甲烷体积分数越接近当量比时,火焰锋面越规则,火焰速度也越快;随着甲烷体积分数的增加,火焰温度和火焰传播速度均呈现先增大后减小的趋势;甲烷体积分数为9%时,火焰温度达到最大值;甲烷体积分数为8%和10%时,65和25μm煤粉最大火焰速度为分别为26.53和39.28 m/s。  相似文献   

16.
针对延长油田CO_2-EOR项目的潜在泄漏问题,根据当地气象环境条件,利用重气扩散模型研究了CO_2泄漏运移特征,并以此为依据,讨论了该工况条件下CO_2泄漏的大气监测方案。结果表明:CO_2喷射泄漏后先上升后下降,并沿着下风向运移;在研究区优势风速2.7 m/s条件下,喷射高度与最大CO_2体积分数点高度随泄漏速度增加而上升;CO_2顺风向运移距离大于侧风向运移距离,且泄漏的地表影响范围随泄漏速度增加呈近似线性增加;泄漏速度3 kg/s时开始出现危险区域,且大于该泄漏速率时,地表危险区面积随泄漏速度增加呈抛物线变化;监测点应位于距离泄漏源下风向50~80 m处,在监测高度0~4 m范围内,CO_2监测半宽相对稳定且较大,约为12 m,当监测高度大于4 m时,监测范围明显减小;考虑到监测点预警功能,认为研究区大气监测需要在潜在泄漏源的西北和正南方向50 m处、高度为0~4 m范围内各设置1个CO_2大气监测点,该监测方案可根据现场最大泄漏量预估值及监测预警要求,适当减小与潜在泄漏源的距离。  相似文献   

17.
为研究含硫气输送管道全管径断裂后的失效影响,提出管道泄漏后硫化氢扩散浓度的计算方法。将管道泄漏过程等效为多个瞬时泄漏气团等时间间隔的连续释放,考虑管道压力变化、风速对泄漏气团的质量、喷射高度的影响,基于高斯烟团模型,对泄漏气团扩散过程中变化的气体浓度进行叠加计算,建立任意时刻沿下风向硫化氢体积分数分布的计算方法。根据输气管道泄漏扩散规律,确定大气扩散参数、各气团质量和喷射高度等基本参数,并以含硫体积分数为10%的输气管进行实例计算。结果表明:地面空气中的硫化氢体积分数在管道泄漏后沿下风向先增大后减小,影响范围不断向下风向延伸;且管径、压力越大,硫化氢在地面的影响范围越广。  相似文献   

18.
将城市边界层模式(CBLM)和随机游动扩散模式连接,组成城市地区应急污染物扩散模式,利用该模式模拟瞬时源(35 t氯气)泄漏后污染物在城市地区的扩散特征.通过平地、3种理想城市建筑和实际南京城市建筑条件下风场和污染物扩散模拟结果的比较,分析了建筑高度和密度对城市风场及污染物扩散的影响.此外,结合美国环保署的毒物浓度伤害准则AEGLs,评估了城市地区氯气泄漏后危险区域的变化特征等.结果表明,污染物质量浓度在地面随时间逐渐减小,质量浓度最大值在泄漏后10~60 min从约139 mg/m3降低到1 mg/m3,外围最小值也从约10 mg/m3降低到0.1 mg/m3.且质量浓度中心随气流向下游移动,在一定时刻内,水平分布尺度逐渐增大.由于建筑拖曳力影响,模拟区域风速变慢,污染物在模拟区域停留时间延长,质量浓度中心值衰减减缓,扩散面积衰减减缓;且建筑高度越高,建筑密度越大,以上特征越明显.污染物在实际扩散中,扩散特征随着建筑条件的变化而不断变化.在所设置的气象条件及事故发生条件下,事故发生30 min后可解除重伤区警报,事故发生1 h后可解除危险区警报.  相似文献   

19.
发生翻滚事故时,大型LNG储罐内压力急剧升高,为防止储罐超压破裂,大量的天然气通过安全阀放空,而天然气具有易燃易爆的特点,可能在LNG接收站的装置区及罐区发生爆炸。利用计算流体力学的方法对不同风速、风向下放空气的扩散过程进行了模拟,得到CH4的浓度分布情况。结果表明:大气风速对放空气的扩散过程具有影响,当风速逐渐增大时,降落到地面的CH4逐渐增多,而当风速超过7m/s时,随着风速的增大,降落到地面的CH4开始减少。随着风速的增大,50%LEL影响范围逐渐减小。各种风速条件下,装置区和罐区CH4的浓度均未达到50%LEL,因此LNG储罐发生翻滚事故时,放空气不会形成爆炸性气氛。  相似文献   

20.
为了研究LNG动力船在通航隧洞这一新型半封闭空间结构船舶通航设施中的航行安全问题,以贵州乌江构皮滩隧洞中LNG动力船发生泄漏事故为研究对象,通过建立仿真模型,利用Fluent对LNG动力船的LNG燃料在有风和无风2种状态下发生阀门泄漏、管系泄漏和罐体破损的气体扩散过程进行模拟,分别计算得出LNG泄漏造成人员窒息、火灾、爆炸等后果的影响范围和程度.结果表明:无风状态下的泄漏危害高于有风状态下的泄漏危害,泄漏点孔径与危害范围呈正相关关系;在人员窒息、爆炸、火灾3种危害中,火灾危险范围最广,其次为爆炸危险范围,最小为人员窒息危险范围,无风状态下罐体发生泄漏造成火灾面积可达609.942 0 m2,有风状态下阀门发生泄漏可导致人员窒息的危险范围面积仅0.008 0 m2.以此为依据,从LNG动力船和通航隧洞两方面分别提出了安全保障措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号