首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative kinetic studies have been performed on the reactions of Cl atoms with a series of methyl alkyl esters in a 405-liter borosilicate glass chamber at (298 ± 3) K and one atmosphere of synthetic air using in situ FTIR spectroscopy to monitor the reactants. Rate coefficients (in units of cm3 molecule?1 s?1) were determined for the following compounds: methyl acetate (2.48 ± 0.58) × 10?12; methyl propanoate (1.68 ± 0.36) × 10?11; methyl butanoate (4.77 ± 0.87) × 10?11; methyl pentanoate (7.84 ± 1.15) × 10?11; methyl hexanoate (1.09 ± 0.31) × 10?10; methyl heptanoate (1.56 ± 0.37) × 10?10; methyl cyclohexane carboxylate (3.32 ± 0.76) × 10?10; methyl-2-methyl butanoate (9.41 ± 1.39) × 10?11.In addition rate coefficients (in units of 10?11 cm3 molecule?1 s?1) have been obtained for the reactions of OH radicals with the following compounds: methyl butanoate (3.55 ± 0.71), methyl pentanoate (5.41 ± 1.08), and methyl-2-methyl butanoate (4.08 ± 0.82).Using the kinetic rate data tropospheric lifetimes for the methyl alkyl esters with respect to their reactions with OH, and Cl have been estimated for typical ambient air concentrations of these oxidants.  相似文献   

2.

Background, aim, and scope  

Acrylate and methacrylate esters are α,β-unsaturated esters that contain vinyl groups directly attached to the carbonyl carbon (CH2=CHCOO– and CH2=CCH3COO–, respectively) and are widely used in the polymer plastic and resin production. Rate coefficients for Cl reactions for most of the unsaturated esters have not been previously determined, and a good understanding is needed of all the atmospheric oxidation processes of these compounds in order to determine lifetimes in the atmosphere and to evaluate the impact of these reactions on the formation of photo-oxidants and therefore on health and environment.  相似文献   

3.
The relative rate method has been used to determine the rate constants for the gas-phase reactions of NO3 radicals with a series of acrylate esters: ethyl acrylate (k1), n-butyl acrylate (k2), methyl methacrylate (k3) and ethyl methacrylate (k4) at 298 ± 1 K and 760 Torr. The obtained rate constants are k1 = (1.8 ± 0.25) × 10?16 cm3 molecule?1 s?1, k2 = (2.1 ± 0.33) × 10?16 cm3 molecule?1 s?1, k3 = (3.6 ± 1.2) × 10?15 cm3 molecule?1 s?1, k4 = (4.9 ± 1.7) × 10?15 cm3 molecule?1 s?1. The experimental rate constants are in good agreement with theoretical rate constants calculated by an algorithm of the correlation between the rate constants and the orbital energies for the reactions of unsaturated VOCs with NO3 radicals. In addition, the atmospheric lifetimes of the compound against NO3 attack are estimated and the results show that NO3 reactions contribute little to the atmospheric losses of acrylate esters except in polluted regions.  相似文献   

4.
5.
6.
Products of the gas-phase reactions of OH radicals (in the presence of NO) and O3 with the biogenic organic compound 2-methyl-3-buten-2-ol have been investigated using gas chromatography with flame ionization detection (GC-FID), combined gas chromatography–mass spectrometry (GC-MS), gas chromatography with Fourier transform infrared detection (GC-FTIR), in situ FT-IR spectroscopy and in situ atmospheric pressure ionization tandem mass spectrometry (API-MS/MS). Formaldehyde, 2-hydroxy-2-methylpropanal and acetone were identified from both the OH radical and O3 reactions, glycolaldehyde and organic nitrate (s) were also observed from the OH radical reaction, and the OH radical formation yield from the O3 reaction was measured. The formaldehyde, 2-hydroxy-2-methylpropanal, glycolaldehyde, acetone and organic nitrate yields from the OH radical reaction were 0.29±0.03, 0.19±0.07, 0.61±0.09, 0.58±0.04 and 0.05±0.02, respectively, and the formaldehyde, 2-hydroxy-2-methylpropanal and OH radical formation yields from the O3 reaction were 0.29±0.03, 0.30±0.06 (0.47 from FT-IR measurements) and 0.19 (uncertain to a factor of 1.5), respectively. Acetone was also observed from the O3 reaction, but appeared to be formed from secondary reactions. Reaction mechanisms are presented and discussed.  相似文献   

7.
Rate coefficients for the reactions of hydroxyl radicals and chlorine atoms with acrylic acid and acrylonitrile have been determined at 298 K and atmospheric pressure. The decay of the organics was followed using a gas chromatograph with a flame ionization detector (GC-FID) and the rate constants were determined using a relative rate method with different reference compounds. Room temperature rate constants are found to be (in cm3 molecule−1 s−1): k1(OH+CH2CHC(O)OH)=(1.75±0.47)×10−11, k2(Cl+CH2CHC(O)OH)=(3.99±0.84)×10−10, k3(OH+CH2CHCN)=(1.11±0.33)×10−11 and k4(Cl+CH2CHCN)=(1.11±0.23)×10−10 with uncertainties representing ±2σ. This is the first kinetic study for these reactions under atmospheric pressure. The rate coefficients are compared with previous determinations taking into account the effect of pressure on the rate constants. The effect of substituent atoms or groups on the overall rate constants is analyzed in comparison with other unsaturated compounds in the literature. In addition, atmospheric lifetimes based on the homogeneous sinks of acrylic acid and acrylonitrile are estimated and compared with other tropospheric sinks for these compounds.  相似文献   

8.
9.
Rate coefficients for the gas-phase reactions of Cl atoms with a series of unsaturated esters CH2C(CH3)C(O)OCH3 (MMA), CH2CHC(O)OCH3 (MAC) and CH2C(CH3)C(O)O(CH2)3CH3 (BMA) have been measured as a function of temperature by the relative technique in an environmental chamber with in situ FTIR detection of reactants. The rate coefficients obtained at 298 K in one atmosphere of nitrogen or synthetic air using propene, isobutene and 1,3-butadiene as reference hydrocarbons were (in units of 10?10 cm3 molecule?1 s?1) as follows: k(Cl+MMA) = 2.82 ± 0.93, k(Cl+MAC) = 2.04 ± 0.54 and k(Cl+BMA) = 3.60 ± 0.87. The kinetic data obtained over the temperature range 287–313 K were used to derive the following Arrhenius expressions (in units of cm3 molecule?1 s?1): k(Cl+MMA) = (13.9 ± 7.8) × 10?15 exp[(2904 ± 420)/T], k(Cl+MAC) = (0.4 ± 0.2) × 10?15 exp[(3884 ± 879)/T], k(Cl+BMA) = (0.98 ± 0.42) × 10?15 exp[(3779 ± 850)/T]. All the rate coefficients display a slight negative temperature dependence which points to the importance of the reversibility of the addition mechanism for these reactions. This work constitutes the first kinetic and temperature dependence study of the reactions cited above.An analysis of the available rates of addition of Cl atoms and OH radicals to the double bond of alkenes and unsaturated and oxygenated volatile organic compounds (VOCs) at 298 K has shown that they can be related by the expression: log kOH = 1.09 log kCl ? 0.10. In addition, a correlation between the reactivity of unsaturated VOCs toward OH radicals and Cl atoms and the HOMO of the unsaturated VOC is presented. Tropospheric implications of the results are also discussed.  相似文献   

10.
The reactions of OH radicals with the following organic sulfur compounds CH3SCH3, CH3SH, C2H5SH and C4H4S, have been studied by the discharge flow reactor technique associated to EPR and mass spectrometric detection. The products of the reactions of OH with CH3SH and C2H5SH have been studied mass spectrometrically. The results indicate that for both reactions the initial step would be equivalent to an H atom transfer.  相似文献   

11.
The stable-carbon kinetic isotope effects (KIEs) associated with the production of methacrolein (MACR) and methyl vinyl ketone (MVK) from the reactions of isoprene with ozone and OH radicals were studied in a 25 L reaction chamber at (298±2) K and ambient pressure. The time dependence of both the stable-carbon isotope ratios and the concentrations was determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The average yields of 13C-containing MACR and MVK generated from the ozone reaction of 13C-containing isoprene differed by ?3.6‰ and ?4.5‰, respectively, from the yields for MACR and MVK containing only 12C. For MACR and MVK generated from the OH-radical oxidation of isoprene the corresponding values were ?3.8‰ and ?2.2‰, respectively. These values indicate a significant depletion in the 13C abundance of MACR and MVK upon their formation relative to isoprene’s pre-reaction 13C/12C ratio, which is supported by theoretical interpretations of the oxidation mechanism of isoprene and its 13C-substituted isotopomers. Numerical model calculations of the isoprene + O3 reaction predicted a similar depletion in 13C for both reaction products upon production. Furthermore, the model predicts mixing ratios and stable carbon delta values for isoprene, MACR, and MVK that were in agreement with the experimental results. The combined knowledge of isotope enrichment values with KIEs will reduce uncertainties in determinations of the photochemical histories of isoprene, MACR, and MVK in the troposphere. The studies presented here were conducted with using isoprene without any artificial isotope enrichment or depletion and it is therefore very likely that these results are directly applicable to the interpretation of studies of isoprene oxidation using stable carbon isotope ratio measurements.  相似文献   

12.
The kinetics of the heterogeneous reaction of OH radicals with 15 polycyclic aromatic hydrocarbons (PAHs) present in laboratory generated simulated kerosene combustion soot was studied at T = 290 K in a low pressure discharge-flow reactor combined with an electron-impact mass spectrometer. The kinetics of soot-bound PAH consumption in reaction with OH were monitored using off-line HPLC measurements of their concentrations in soot samples as a function of time of exposure to OH. Concentration of OH radicals in the gas phase was measured by mass spectrometry. The first-order rate constants measured for the individual PAH at T = 290 K ranged from 0.02 to 0.04 s?1 and were found to be independent of the OH concentration ([OH] = (0.34–2.5) × 1012 molecule cm?3) and of the molecular structure of the PAH. In addition, the uptake coefficient of OH on soot surface and the diffusion coefficient of OH in He were measured to be 0.19 ± 0.03 (calculated with geometric surface area) and (615 ± 80) Torr cm2 s?1, respectively. Comparison of the results on the PAH + OH reaction to those from previous studies carried out on different carbonaceous substrates, indicates probable dependence of the heterogeneous reactivity of PAH toward OH on the substrate nature. Rapid reaction with OH can be an important potential pathway of the atmospheric degradation of non-volatile PAH present mainly in the particulate phase in the atmosphere.  相似文献   

13.
14.
15.
16.
17.
Using the relative rate technique, rate constants for the gas-phase reactions of hydroxyl radicals with 2-chloroethyl methyl ether (k1), 2-chloroethyl ethyl ether (k2) and bis(2-chloroethyl) ether (k3) have been measured. Experiments were carried out at (298 ± 2) K and atmospheric pressure using synthetic air as bath gas. Using n-pentane and n-heptane as reference compounds, the following rate constants were derived: k1 = (5.2 ± 1.2) × 10?12, k2 = (8.3 ± 1.9) × 10?12 and k3 = (7.6 ± 1.9) × 10?12, in units of cm3 molecule?1 s?1. This is the first experimental determination of k2 and k3 under atmospheric pressure. The rate constants obtained are compared with previous literature data and the observed trends in the relative rates of reaction of hydroxyl radicals with the ethers studied are discussed. The atmospheric implications of the results are considered in terms of lifetimes and fates of the hydrochloroethers studied.  相似文献   

18.
The Atmospheric Oxidation Program (AOP) is a computer program that estimates the rate constant for the atmospheric, gas-phase reaction between photochemically produced hydroxyl radicals (OH) and organic chemicals. It also estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. AOP, which uses estimation methods developed by Atkinson and co-workers, estimates more accurate rate constants than the PCFAP (Fate of Atmospheric Pollutants) program that was part of the U.S. EPA's Graphical Exposure Modeling System (GEMS). Due to its superior predictive ability, the EPA is currently using AOP to evaluate the atmospheric fate of compounds defined under Sections 4, 5 and 6 of the Toxic Substances Control Act (TSCA).  相似文献   

19.
20.
The pulsed laser photolysis/pulsed laser-induced fluorescence (PLP/PLIF) technique has been applied to obtain rate coefficients for OH + dioxin (DD) (k1), OH + 2-chlorodibenzo-p-dioxin (2-CDD) (k2), OH + 2,3-dichlorodibenzo-p-dioxin (2,3-DCDD) (k3), OH + 2,7-dichlorodibenzo-p-dioxin (2,7-DCDD) (k4), OH + 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) (k5), OH + 1,2,3,4-tetrachlorodibenzo-p-dioxin (1,2,3,4-TCDD) (k6), and OH + octachlorodibenzo-p-dioxin (OCDD) (k7) over an extended range of temperature. The atmospheric pressure (740 +/- 10 Torr) rate measurements are characterized by the following Arrhenius parameters (in units of cm3 molecule(-1) s(-1), error limits are 1 omega): k1(326-907 K) = (1.70+/-0.22) x 10(-12)exp(979+/-55)/T, k2(346-905 K) = (2.79+/-0.27) x 10(-12)exp(784+/-54)/T, k3(400-927 K) = 10(-12)exp(742+/-67)/T, k4(390-769 K) = (1.10+/-0.10) x 10(-12)exp(569+/-53)/T, k5(379-931 K) = (1.02+/-0.10) x 10(-12)exp(580+/-68)/T, k6(409-936 K) = (1.66+/-0.38) x 10(-12)exp(713+/-114)/T, k7(514-928 K) = (3.18+/-0.54) x 10(-12)exp(-667+/-115)/T. The overall uncertainty in the measurements, taking into account systematic errors dominated by uncertainty in the substrate reactor concentration, range from a factor of 2 for DD, 2-CDD, 2,3-DCDD, 2,7-DCDD, and 2,8-DCDD to +/- a factor of 4 for 1,2,3,4-TCDD and OCDD. Negative activation energies characteristic of an OH addition mechanism were observed for k1-k6. k7 exhibited a positive activation energy. Cl substitution was found to reduce OH reactivity, as observed in prior studies at lower temperatures. At elevated temperatures (500 K < T < 500 K), there was no experimental evidence for a change in reaction mechanism from OH addition to H abstraction. Theoretical calculations suggest that H abstraction will dominate OH reactivity for most if not all dioxins (excluding OCDD) at combustion temperatures (>1000 K). For OCDD, the dominant reaction mechanism at all temperatures is OH addition followed by Cl elimination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号