首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
考察了Fenton氧化法处理印染废水生化出水时,不同因素对色度去除效果的影响。在最佳处理条件下,即[H2O2]∶[Fe2+]为6∶1,反应初始pH为4.0,H2O2和FeSO4的投加量分别为3.6 mmol/L和0.6 mmol/L,反应时间为30min,UV254、DOC和COD的去除率分别达到了84%、52%和84%,ADMI7.6和稀释倍数表征的色度去除率分别达到了94%和96%。通过XAD-8/XAD-4吸附树脂联用技术将印染废水生化出水中溶解性有机物分为疏水酸、非酸疏水物质、弱疏水物质及亲水物质4类有机物。实验结果表明,对于该印染废水的生化出水,疏水性物质是引起色度的主要物质,所占比例以ADMI7.6表征时为92%,其中以非酸疏水物质的贡献最大,达到53%。Fenton试剂氧化处理对此水样中的非酸疏水物质和疏水酸均有较好的去除效果,对弱疏水性有机物和亲水性有机物去除率较低。  相似文献   

2.
采用连续流活性炭炭床处理印染废水生化出水,通过XAD-8/XAD-4吸附树脂将印染废水生化出水中的溶解性有机物分为4类:疏水酸、非酸疏水物质、弱疏水物质和亲水物质,采用超滤膜法测定水样的分子量分布,对印染废水生化出水中不同种类以及不同分子量大小的有机物在煤质炭、椰壳炭2种活性炭动态实验处理过程中的去除特性进行研究。实验结果表明,2种活性炭对该水样中的有机物均有明显的去除效果,其中以煤质炭的处理效果较优。煤质炭吸附疏水性和亲水性有机物均有明显的处理效果,对非酸疏水物质和弱疏水有机物的吸附效果较差。煤质炭对分子量<10 k的小分子有机物的吸附效果对实验结果的贡献较大。  相似文献   

3.
This research involved the use of response surface methodology (RSM) to investigate the adsorption of Disperse Red 167 dye onto the bamboo-based activated carbon activated with H3PO4 (PBAC) in a batch process. F400, a commercially available activated carbon, was used in parallel for comparison. Analysis of variance showed that input variables such as the contact time, temperature, adsorbent dosage and the interaction between the temperature and the contact time had a significant effect on the dye removal for both adsorbents. RSM results show that the optimal contact time, temperature, initial dye concentration and adsorbent dosage for both adsorbents were found to be 15.4 h, 50 °C, 50.0 mg L?1 and 12.0 g L?1, respectively. Under these optimal conditions, the removal efficiencies reached 90.23 % and 92.13 % for PBAC and F400, respectively, with a desirability of 0.937. The validation of the experimental results confirmed the prediction of the models derived from RSM. The adsorption followed a nonlinear pseudo-first-order model and agreed well with the Freundlich and Temkin isotherm as judged by the levels of the AICc and the Akaike weight. Furthermore, the thermodynamics analysis indicated that, for both adsorbents, the adsorption was a physical process that was spontaneous, entropy-increasing and endothermic.  相似文献   

4.
利用离子交换法制备了可磁性分离并具有高效可见光催化活性的Fe3O4/Ag3PO4复合光催化剂,对制备的样品进行了粉末X射线衍射(XRD)表征。同时,用孔雀石绿溶液模拟染料废水,考察了孔雀石绿溶液的初始浓度、催化剂投加量及溶液初始pH值对复合光催化剂催化降解孔雀石绿效果的影响,并探讨了Fe3O4/Ag3PO4磁性复合光催化剂的回收及循环利用特性。结果表明,该复合光催化剂在可见光照射下表现出较高的催化活性;当孔雀石绿溶液浓度为5mg/L、复合催化剂投加量为200mg/L、溶液初始pH=3.0、可见光照20min时,Fe3O4/Ag3PO4复合光催化剂对孔雀石绿的去除率可达96%;反应结束后,磁性复合光催化剂在外加磁场作用下,易于从反应体系中分离,循环使用3次后,其光催化效率仍可达到60%。实验表明,制备的复合光催化剂对染料废水中孔雀石绿有较高的降解效率,并具有优良的回收利用性。  相似文献   

5.
6.
电催化氧化法处理染料废水的影响因素及动力学   总被引:1,自引:0,他引:1  
以钛涂膜极板为阳极、石墨极板为阴极、Fe2O3/γ-Al2O3为多相催化剂,构建电-多相催化氧化体系,研究了该体系对酸性大红模拟染料废水中COD的去除效果及其影响因素,优化了实验条件,并初步探讨了COD的降解机理。结果表明,在槽电压20 V,pH 4,曝气量0.24 m3/h,极板间距3 cm的条件下,COD的去除率最高,达到64.5%;COD的降解近似符合一级动力学方程:ln(C0/C)=0.0034t+0.719。在电-多相催化氧化体系中,废水中的有机物被直接矿化或降解为小分子有机物。  相似文献   

7.
复合人工湿地去除生活污水中的有机物和氮   总被引:1,自引:1,他引:0  
为提高人工湿地对生活污水的处理能力,对传统的单一垂直流湿地进行改进和优化。采用2个垂直流人工湿地串联,并在好氧湿地内增加曝气供氧,使好氧湿地内溶解氧保持在2~2.5 mg/L范围内,而后增加出水回流。结果表明,增加曝气显著提高了出水的COD、NH3-N去除率,但TN去除效果仍不达标;当随着回流比的增加,NH3-N的去除率略有提高,而后趋于稳定,TN去除率提高显著,但回流比过大时,TN去除率则有所下降。  相似文献   

8.
开放体系下稻草-白腐菌对染料的吸附脱色与降解   总被引:1,自引:0,他引:1  
在开放体系下,研究了稻草-白腐菌对孔雀绿和结晶紫的吸附脱色与降解.结果表明,稻草能有效地对孔雀绿和结晶紫进行吸附脱色,其中稻草用量、粒径和pH对稻草吸附染料有一定的影响,在合适条件下稻草对孔雀绿和结晶紫的最大吸附量分别可达到31.89、52.98mg/g;在吸附孔雀绿和结晶紫的稻草中接入白腐菌,发现开放体系下白腐菌能对两种染料进行降解,6d后,孔雀绿和结晶紫的脱色率分别达到93.67%和80.OO%;再生后的稻草基质对孔雀绿和结晶紫也有较好的吸附,最大再生率分别达到74.45%和43.34%.降解过程中白腐菌分泌酶的酶活力与染料及稻草基质降解没有直接的联系.  相似文献   

9.
Wang J  Long MC  Zhang ZJ  Chi LN  Qiao XL  Zhu HX  Zhang ZF 《Chemosphere》2008,71(1):195-202
Wastewater in Shaoxing wastewater treatment plant (SWWTP) is composed of more than 90% dyeing and printing wastewater with high pH and sulfate. Through a combination process of anaerobic acidogenic [hydraulic retention time (HRT) of 15h], aerobic (HRT of 20h) and flocculation-precipitation, the total COD removal efficiency was up to 91%. But COD removal efficiency in anaerobic acidogenic unit was only 4%. As a comparison, the COD removal efficiency was up to 35% in the pilot-scale upflow anaerobic sludge bed (UASB) reactor (HRT of 15h). GC-MS analysis showed that the response abundance of these wastewater samples decreased with their removal of COD. A main component of the raw influent was long-chain n-alkanes. The final effluent of SWWTP had only four types of alkanes. After anaerobic unit at SWWTP, the mass percentage of total alkanes to total organic compounds was slightly decreased while its categories increased. But in the UASB, alkanes categories could be removed by 75%. Caffeine as a chemical marker could be detected only in the effluent of the aerobic process. Quantitative analysis was given. These results demonstrated that GC-MS analysis could provide an insight to the measurement of organic compounds removal.  相似文献   

10.
He F  Hu W  Li Y 《Chemosphere》2004,57(4):293-301
A microbial consortium consisting of a white-rot fungus 8-4* and a Pseudomonas 1-10 was isolated from wastewater treatment facilities of a local dyeing house by enrichment, using azo dye Direct Fast Scarlet 4BS as the sole source of carbon and energy, which had a high capacity for rapid decolorization of 4BS. To elucidate the decolorization mechanisms, decolorization of 4BS was compared between individual strains and the microbial consortium under different treatment processes. The microbial consortium showed a significant improvement on dye decolorization rates under either static or shaking culture, which might be attributed to the synergetic reaction of single strains. From the curve of COD values and the UV-visible spectra of 4BS solutions before and after decolorization cultivation with the microbial consortium, it was found that 4BS could be mineralized completely, and the results had been used for presuming the degrading pathway of 4BS. This study also examined the kinetics of 4BS decolorization by immobilized microbial consortium. The results demonstrated that the optimal decolorization activity was observed in pH range between four and 9, temperature range between 20 and 40 degrees C and the maximal specific decolorization rate occurred at 1,000 mg l(-1) of 4BS. The proliferation and distribution of microbial consortium were also microscopically observed, which further confirmed the decolorization mechanisms of 4BS.  相似文献   

11.
This article describes the photolytic degradation of malachite green (MG), a cationic triphenylmethane dye used worldwide as a fungicide and antiseptic in the aquaculture industry. Photolysis experiments were performed by direct exposure of a solution of MG in water to natural sunlight. The main transformation products (TPs) generated during the process were identified by liquid chromatography time-of-flight mass spectrometry (LC–TOF-MS) and gas chromatography mass spectrometry (GC–MS). The 28 TPs identified with this strategy indicate that MG undergoes three main reactions, N-demethylation, hydroxylation and cleavage of the conjugated structure forming benzophenone derivatives. These processes involve hydroxyl radical attack on the phenyl ring, the N,N-dimethylamine group and the central carbon atom. The Vibrio fischeri acute toxicity test showed that the solution remains toxic after MG has completely disappeared. This toxicity could be assigned, at least in part, to the formation of 4-(dimethylamine)benzophenone, which has an EC50,30 min of 0.061 mg l−1, and is considered “very toxic to aquatic organisms” by current EU legislation.  相似文献   

12.
生物质活性炭的制备及其染料废水中的应用   总被引:8,自引:0,他引:8  
以城市污水厂活性污泥为原料,用3 mol/L ZnCl2溶液活化,通入水蒸气作活化气制备活性炭吸附剂.实验结果表明,温度为600℃条件下,活化时间为1 h,制得的活性炭其碘吸附值为374.10 mg/g,比表面积为381.62 m2/g,孔容积为0.25 cm3/g,微孔容积为0.11cm3/g.并进一步将生物质活性炭应用于染料废水的处理,考察了吸附时间、活性炭投加量和pH对色度及TOC的脱除效果的影响.室温下,酸性大红GR染料废水初始浓度为300 mg/L,污泥活性炭的最佳投加量为2%(质量分数),吸附15min,废水色度脱除率可达99.6%,TOC去除率可达99.7%,利用等温吸附实验作吸附等温线,吸附等温线可以用Freundlich或Langmuir方程描述.  相似文献   

13.
Ozcan A  Sahin Y  Oturan MA 《Chemosphere》2008,73(5):737-744
The removal of a carbamate herbicide, propham, from aqueous solution has been carried out by the electro-Fenton process. Hydroxyl radical, a strong oxidizing agent, was generated catalytically and used for the oxidation of propham aqueous solutions. The degradation kinetics of propham evidenced a pseudo-first order degradation. The absolute rate constant of second order reaction kinetics between propham and ()OH was determined as (2.2+/-0.10)x10(9)m(-1)s(-1). The mineralization of propham was followed by the organic carbon (TOC) removal. The optimal Fe(3+) concentration was found as 0.5mM at 300mA. The 94% of initial TOC of 0.25mM propham solution was removed in 8h at the optimal conditions by using the cathode area to solution volume ratio of 3.33dm(-1). The maximum mineralization current efficiency values were obtained at 60mA in the presence of 0.5mM Fe(3+). During the electro-Fenton treatment, several degradation products were formed. These intermediates were identified by using high performance liquid chromatography, liquid chromatography-mass spectrometry, gas chromatography-mass spectrometry and ion chromatography analysis. The identified by-products allowed proposing a pathway for the propham mineralization.  相似文献   

14.
褐煤对废水中酸性红B的吸附去除   总被引:1,自引:0,他引:1  
选用褐煤作为廉价吸附剂,脱除模拟废水中染料酸性红B。研究了褐煤对废水中酸性红B的吸附动力学、等温吸附模式,考察了pH、褐煤投加量以及离子强度(NaCl)对吸附效果的影响。结果表明,吸附动力学较好地符合准二级速率方程(R2=1.000),并且以化学吸附为主;吸附等温式满足Langmuir方程(R2=0.986),最大单分子层吸附量为42 mg/g;废水中染料的去除率随溶液pH的减小而明显增加,在pH=1时,去除效果最好,证实吸附过程存在静电吸引及化学键合;在一定条件下,溶液中酸性红B的去除率随褐煤投加量增加而增加;吸附效果随溶液中离子强度(NaCl)的增加而增强。说明褐煤可以作为一种廉价吸附材料,用于处理含染料废水。  相似文献   

15.
Dichloromethane (DCM) is a toxic volatile compound which is found in the ground waters and wastewaters of the pharmaceutical, chemical, textile, metal-working and petroleum industries. DCM inhibits the growth of aquatic organisms, induces cancer in animals and is potentially carcinogenic for humans. This article aims to review existing water treatments for DCM removal, focusing on recent technological advances. Air stripping, adsorption and pervaporation were found to be effective in separating DCM from water with a process efficiency of about 99%, 90% and 80% respectively. Electrocatalysis over Cu-impregnated carbon fiber electrode, photo irradiation over TiO2 and photo-Fenton process led to the complete decomposition of DCM. Aerobic and anaerobic water treatment achieved 99% and 95% removal of DCM respectively. The maximum efficiencies observed for acoustic cavitation, radiolysis and catalytic degradation of CH2Cl2 were 90%, 92% and 99% respectively. Ozonation and persulfate oxidation showed lower DCM degradation efficiencies, not exceeding 20%. Further combination of different water treatment methods will further increase DCM degradation efficiency.  相似文献   

16.
Removal of nitrogen and phosphate from wastewater by addition of bittern   总被引:30,自引:0,他引:30  
Lee SI  Weon SY  Lee CW  Koopman B 《Chemosphere》2003,51(4):265-271
Removal of nitrogen and phosphate through crystallization of struvite (MgNH(4)PO(4).6H(2)O) has gained increasing interest. Since wastewaters tend to be low in magnesium relative to ammonia and phosphates, addition of this mineral is usually required to effect the struvite crystallization process. The present study evaluated the feasibility of using bittern, a byproduct of salt manufacture, as a low-cost source of magnesium ions. High reaction rates were observed; the extent of nitrogen and phosphorus removals did not change beyond 10 min. Phosphorus removals from pure solutions with bittern added were equivalent to those obtained with MgCl(2) or seawater. Nitrogen removals with bittern were somewhat lower than with the alternate Mg(2+) sources, however. Application of bittern to biologically treated wastewater from a swine farm achieved high phosphate removal, but ammonia removals were limited by imbalance in the nitrogen:phosphorus ratio.  相似文献   

17.
采用电絮凝-超滤(electrocoagulation-ultrafiltration,EC-UF)组合技术对含铜废水中的铜离子进行了处理实验研究。讨论了电流密度、初始pH、初始铜浓度和初始电导率等因素对铜的去除效果和膜污染的影响,并分析了这些影响因素对EC-UF组合技术效率的作用机制。结果表明,在电流密度J=50 A·m-2、初始铜浓度C(Cu2+)≤40 mg·L-1、初始pH=4~8、初始电导率σ=2 mS·cm-1、电解时间20 min的条件下,废水中铜的去除率达到99.6%并有效的减缓了膜污染。本研究为EC-UF组合技术除铜的实践应用提供了科学依据。  相似文献   

18.
焦化废水中COD、挥发酚和硫氰化物同步高效去除   总被引:1,自引:0,他引:1  
采用两级膨胀颗粒污泥床(EGSB)反应器在微氧条件下处理焦化废水,考察了该工艺对焦化废水中挥发酚、硫氰化物、氰化物和COD的去除效果。研究结果表明,在进水流量为1 L/h,总水力停留时间(HRT)为24 h的条件下,两级EGSB反应器对COD的去除效果较好。稳定运行时,在进水挥发酚为56.8~185.1 mg/L、硫氰化物为287.1~539.9 mg/L、氰化物为0.17~0.72 mg/L的条件下,系统对其平均去除率分别为99.9%、96.8%和82.6%,出水挥发酚和氰化物均能达到《污水综合排放标准(GB8978-1996)》的一级标准。进水COD浓度在1 084~1 880 mg/L之间,平均去除率为76.9%,出水平均浓度为325 mg/L。  相似文献   

19.
为了研究纳米铁炭(NZVI/AC)体系去除硝酸盐的反应途径及其动力学,通过NZVI/AC、纳米铁(NZVI)、活性炭(AC)对硝酸盐的还原或吸附过程探讨微电解作用,反应前后NZVI/AC变化、氮种类变化、pH变化,以及NO3-和Fe2+的相互作用探讨其还原途径,对比不同条件下(NZVI/AC投加量、硝酸盐浓度、溶液初始pH、离子强度)的动力学规律。结果表明:NZVI/AC在去除硝酸盐的过程中存在协同作用且最终产物主要是NH4+,无论是在NZVI/AC不足或过量的情况下,准二级吸附动力学模型对于NO3-的去除和Langmuir-Hinshelwood模型对于NH4+的生成都能提供很好的拟合结果。  相似文献   

20.

To eradicate the aquatic pollution caused by dyes, trendily the global researchers provide dedication to dye degradation using nanostructured photocatalyst. This research work is dedicated to explore an advanced, facile, bio-compact green fabricated nanostructure for water refinement. In this regard, plant-mediated syntheses of pure CeO2 and Mn-decorated CeO2 nano-powders have been inspected using seed extract of Cassia angustifolia. Investigations through UV-diffuse reflectance spectroscopy explored the significantly tuned band gap of Mn:CeO2. FT-IR spectroscopy shows the existing functional groups of high-potential phenolic compounds, proteins, and amino acids in Cassia angustifolia act as reducing and capping agents involved in the green fabricated nanostructured samples. X-ray diffraction pattern has been exposed to crystalline cubic fluorite morphology in a single phase and it leads to a regulated optimized amount of Mn on CeO2 nanostructure. The FESEM analysis predicts the morphology of CeO2 in spherical and Mn:CeO2 in flower-like structure. The HRTEM analysis has portrayed particle size of CeO2 is 11 nm and tuned Mn:CeO2 nanostructure is 9 nm. The HRTEM images revealed the average particle size in the range 10–12 nm in CeO2 and 8–9 nm in 5 mol% Mn:CeO2 nanoparticles. It showed a decrease in average particle size with an increase in Mn concentration and the reduction in size may be due to the replacement of Ce(IV) with Mn(II) ions. The elemental composition in nanostructure was predicted using energy-dispersive X-ray analysis. The rapid photocatalytic degradation efficiency of malachite green was effectually performed and compared with the kinetics model of Mn:CeO2 and pure CeO2 nanostructures. From the augmented results, tuned Mn:CeO2 was found to act as the finest green fabricated photocatalyst in the amputation of lethal and carcinogenic dye.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号