首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND, AIM, AND SCOPE: The use of fish embryos is not regulated by current legislations on animal welfare and is therefore considered as a refinement, if not replacement of animal experiments. Fish embryos represent an attractive model for environmental risk assessment of chemicals since they offer the possibility to perform small-scale, high-throughput analyses. MAIN FEATURES: Beyond their application for determining the acute toxicity, fish embryos are also excellent models for studies aimed at the understanding of toxic mechanisms and the indication of possible adverse and long-term effects. Therefore, we have reviewed the scientific literature in order to indicate alternative applications of the fish embryo model with focus on embryos of the zebrafish. RESULTS AND DISCUSSIONS: The analysis of the mode of action is important for the risk assessment of environmental chemicals and can assist in indicating adverse and long-term effects. Toxicogenomics present a promising approach to unravel the potential mechanisms. Therefore, we present examples of the use of zebrafish embryos to study the effect of chemicals on gene and protein patterns, and the potential implications of differential expression for toxicity. The possible application of other methods, such as kinase arrays or metabolomic profiling, is also highlighted. Furthermore, we show examples of toxicokinetic studies (bioconcentration, ABC transporters) and discuss limitations that might be caused by the potential barrier function of the chorion. Finally, we demonstrate that biomarkers of endocrine disruption, immune modulation, genotoxicity or chronic toxicity could be used as indicators or predictors of sub-acute and long-term effects. CONCLUSIONS: The zebrafish embryo represents a model with an impressive range of possible applications in environmental sciences. Particularly, the adaptation of molecular, system-wide approaches from biomedical research is likely to extend its use in ecotoxicology. RECOMMENDATIONS AND PERSPECTIVES: Challenges for future research are (1) the identification of further suitable molecular markers as indicators of the mode of action, (2) the establishment of strong links between (molecular) effects in short-term assays in embryos and long-term (toxic) effects on individuals, (3) the definition of limitations of the model and (4) the development of tests that can be used for regulatory purposes.  相似文献   

2.
To obtain robust data on the toxicity of LAS, tests with the collembolan Folsomia candida L., the oligochaetes Aporrectodea caliginosa Savigny (earthworm) and Enchytraeus crypticus Westheide and Graefe (enchytraeid) were performed in a sandy loam soil. Additionally limited tests with LAS spiked to sewage sludge, and subsequently mixed into soil, were performed. For the endpoint of interest, reproduction in soil, we found an EC10 of 205 mg LAS kg(-1) soil [8.6-401] [95% confidence limits] for F. candida and an EC10 of 46 mg LAS kg(-1) soil [13-80] for A. caliginosa after 28 days. E. crypticus was not affected by concentrations up to 120 mg LAS kg(-1) soil. When adding (low contaminated) non-spiked sludge to soil, high stimulation of reproduction was observed for E. crypticus and A. caliginosa but not for F. candida. We argue that this difference in stimulative response between the tested species is related to the difference in feeding behaviour. Sludge spiked with LAS did not significantly affect the reproduction of F. candida (fertility: number of juvenile offspring) and A. caliginosa (fecundity: number of cocoons) (dose equivalent to 181 g and 91 g LAS kg(-1) sludge, respectively). Significantly reduced reproduction was observed for E. crypticus (at 120 mg LAS kg(-1) soil+sludge corresponding to 72 g LAS kg(-1) sludge) compared to non-spiked sludge. The reproduction by E. crypticus was, however, comparable to the reproduction observed in the control soil without sludge. Compared to LAS directly spiked to soil, the reproductive output of organisms exposed to spiked sludge was either not significantly different (F. candida, E. crypticus) or significantly improved (A. caliginosa). More studies are needed in order to make firm conclusions on the potential effect of artificially contaminated sludge in soil systems.  相似文献   

3.
Assessment of bioconcentration and secondary poisoning of surfactants   总被引:1,自引:0,他引:1  
The relevance of the bioconcentration behaviour of surfactants for the secondary poisoning assessment and for the risk characterisation in the bird and mammalian food chain has been investigated. The approach used is described in the recently revised EU Technical Guidance Document for the Risk Assessment of Substances. The results demonstrate that, based on experimentally derived bioconcentration factors, environmental concentrations and effects in animals, there is a clear level of safety for both linear alkylbenzene sulphonate (LAS) and alcohol ethoxylates (AE), the most important surfactants by volume. To assess other surfactants used in detergents, a bioconcentration factor that would need to be attained for secondary poisoning to be of concern has been estimated from predicted environmental concentrations and known long-term effects data in animals. Based on the known structural similarity of these surfactants to LAS and AE and the ubiquitous nature of the enzymatic systems that are present in biotransformation processes in organisms, it is concluded that bioconcentration of these surfactants to these levels is highly unlikely. Therefore the potential for secondary poisoning effects of these surfactants is extremely low.  相似文献   

4.
Since the Bhopal incident, the public has placed pressure on regulatory agencies to set community exposure limits for the dozens of chemicals that may be released by manufacturing facilities. More or less objective limits can be established for the vast majority of these chemicals through the use of risk assessment. However, each step of the risk assessment process (i.e., hazard identification, dose-response assessment, exposure assessment, and risk characterization) contains a number of pitfalls that scientists need to avoid to ensure that valid limits are established. For example, in the hazard identification step there has been little discrimination among animal carcinogens with respect to mechanism of action or the epidemiology experience. In the dose-response portion, rarely is the range of “plausible” estimated risks presented. Physiologically based pharmacokinetic (PB-PK) models should be used to understand the difference between the tissue doses and the administered dose, as well as the difference in target tissue concentrations of the toxicant between rodents and humans. Biologically-based models like the Moolgavkar-Knudson-Venzon (MKV) should be developed and used, when appropriate. The exposure assessment step can be significantly improved by using more sensitive and specific sampling and analytical methods, more accurate exposure parameters, and computer models that can account for complex environmental factors. Whenever possible, model predictions of exposure and uptake should be validated by biological monitoring of exposed persons (urine, blood, adipose) or by field measurements of plants, soil, fish, air, or water. In each portion of an assessment, the weight of evidence approach should be used to identify the most defensible value. In the risk characterization, the best estimate of the potential risk as well as the highest plausible risk should be presented. Future assessments would be much improved if quantitative uncertainty analyses were conducted. Procedures are currently available for making future assessments. By correcting some of these shortcomings in how health risk assessments have been conducted, scientists and risk managers should be better able to identify scientifically appropriate ambient air standards and emission limits.  相似文献   

5.
Since the Bhopal incident, the public has placed pressure on regulatory agencies to set community exposure limits for the dozens of chemicals that may be released by manufacturing facilities. More or less objective limits can be established for the vast majority of these chemicals through the use of risk assessment. However, each step of the risk assessment process (i.e., hazard identification, dose-response assessment, exposure assessment, and risk characterization) contains a number of pitfalls that scientists need to avoid to ensure that valid limits are established. For example, in the hazard identification step there has been little discrimination among animal carcinogens with respect to mechanism of action or the epidemiology experience. In the dose-response portion, rarely is the range of "plausible" estimated risks presented. Physiologically based pharmacokinetic (PB-PK) models should be used to understand the difference between the tissue doses and the administered dose, as well as the difference in target tissue concentrations of the toxicant between rodents and humans. Biologically-based models like the Moolgavkar-Knudson-Venzon (MKV) should be developed and used, when appropriate. The exposure assessment step can be significantly improved by using more sensitive and specific sampling and analytical methods, more accurate exposure parameters, and computer models that can account for complex environmental factors. Whenever possible, model predictions of exposure and uptake should be validated by biological monitoring of exposed persons (urine, blood, adipose) or by field measurements of plants, soil, fish, air, or water. In each portion of an assessment, the weight of evidence approach should be used to identify the most defensible value. In the risk characterization, the best estimate of the potential risk as well as the highest plausible risk should be presented. Future assessments would be much improved if quantitative uncertainty analyses were conducted. Procedures are currently available for making future assessments. By correcting some of these shortcomings in how health risk assessments have been conducted, scientists and risk managers should be better able to identify scientifically appropriate ambient air standards and emission limits.  相似文献   

6.
Linear alkylbenzene sulphonate (LAS) is used at a rate of approximately 430,000 tons/y in Western Europe, mainly in laundry detergents. It is present in sewage sludge (70-5,600 mg/kg; 5-95th percentile) because of its high usage per capita, its sorption and precipitation in primary settlers, and its lack of degradation in anaerobic digesters. Immediately after amendment, calculated and measured concentrations are <1 to 60 mg LAS/kg soil. LAS biodegrades rapidly in soil with primary and ultimate half-lives of up to 7 and 30 days, respectively. Calculated residual concentrations after the averaging time (30 days) are 0.24-18 mg LAS/kg soil. The long-term ecotoxicity to soil microbiota is relatively low (EC10 >or=26 mg sludge-associated LAS/kg soil). An extensive review of the invertebrate and plant ecotoxicological data, combined with a probabilistic assessment approach, led to a PNEC value of 35 mg LAS/kg soil, i.e. the 5th percentile (HC5) of the species sensitivity distribution (lognormal distribution of the EC10 and NOEC values). Risk ratios were identified to fall within a range of 0.01 (median LAS concentration in sludge) to 0.1 (95th percentile) and always below 0.5 (maximum LAS concentration measured in sludge) according to various scenarios covering different factors such as local sewage influent concentration, water hardness, and sewage sludge stabilisation process. Based on the present information, it can be concluded that LAS does not represent an ecological risk in Western Europe when applied via normal sludge amendment to agricultural soil.  相似文献   

7.
Buet A  Banas D  Vollaire Y  Coulet E  Roche H 《Chemosphere》2006,65(10):1846-1858
A screening of relevant biomarkers was carried out in order to evaluate metabolic and cellular damages in European eels exposed to a non-point source contamination by persistent organic pollutants (POP) such as polycyclic aromatic hydrocarbons (PAH) and organochlorine compounds (OC) in a protected area, the Nature Reserve of Camargue (France). Investigations were focused on metabolic responses including detoxification mechanisms (biotransformation, antioxidant process), energy requirements and enzymatic membrane markers either involved in neuronal conduction (acetylcholinesterase, AChE) or in osmoregulation and energy metabolism (ATPases). The hepatic and muscular glycogen rates seemed to be suitable biomarkers as well as three hepatic activities involved in the protection against oxyradicals: catalase, glutathione peroxidase (SeGPx) and superoxide dismutases (SOD). The muscle and gill ATPases as well as the muscle and brain AChE showed more significant relevance in terms of biomarkers than the biotransformation enzymes: ethoxyresorufine-O-deethylase (EROD) and uridine diphospho-glucuronyl transferase (UDPGT). However, most of these enzymatic activities depend on numerous abiotic factors, which must be taken into account in such a biomarker assessment approach. Our study provides some conclusive elements to approve the use in situ of biomarkers developed from laboratory studies. It also raises a question regarding the location of contaminant impregnation in fish organ, in relation with age, development status or mode of contamination, and its influence on biomarker response. If the relevance of membrane indicators is confirmed, this study provides an original statement of the extent of the ecotoxicological threat for the aquatic species in a protected area, due to the occurrence of POP in the cell membranes.  相似文献   

8.
This paper develops quantitative structure activity relationships (QSARs) for the acute aquatic toxicity of the anionic surfactants linear alkylbenzene sulphonates (LAS) and ester sulphonates (ES) to Daphnia magna, the aim being to investigate the modes of action by comparing the QSARs for the two types of surfactant. The generated data for ES have been used to develop a QSAR correlating toxicity with calculated log P values: log(1/EC50)= 0.78 log P+1.37. This equation has an intercept 1.1 log units lower than a QSAR for linear alkylbenzene sulphonates (LAS). The findings suggest that either ES surfactants act by a different mode of action to LAS and other anionic surfactants or the log P calculation method introduces a systematic overestimate when applied to ES.  相似文献   

9.
10.
Acute toxicity to fish hepatoma cell line PLHC-1 and to juvenile rainbow trout was examined for 18 plant protection products. The main objective was to explore whether hepatoma cells could be used to predict acute toxicity in fish taking into account the mode of toxic action and compound properties. Acute fish toxicity was determined using the OECD guideline test 203 and compared to predicted baseline LC50 of acute fish toxicity calculated with a quantitative structure-activity relationship (QSAR) derived for guppy fish. Cytotoxicity was determined through the inhibition of neutral red uptake (NR(50)) into lysosomes and compared to predicted baseline cytotoxicity derived for goldfish GFS cells. In general, NR50 values were higher by a factor ranging from 3 to 3000 than the corresponding acute LC50. A weak correlation between NR50 and LC50 values was found (log/log: r2=0.62). Also the lipophilicity (log K(ow)) was not a good predictor for cytotoxicity (r2=0.43) and lethality (r2=0.57) of these pesticides. The neutral red assay is detecting general baseline toxicity only. Comparing LC50 data to QSAR results, the compounds can be classified to act as narcotics or reactive compounds with a specific mode of toxic action in fish. The results indicate that limitation of the neutral red assay in predicting acute fish toxicity. A promising alternative might be the assessment of toxicity in a set of in vitro systems addressing also cell-specific functions which are related to the mode of toxic action of the compound.  相似文献   

11.
Guidelines provided by the OECD and EPPO allow the use of single-species tests performed in greenhouses to assess the risk of herbicides to non-target terrestrial plant communities in the field. The present study was undertaken to investigate the use of greenhouse data to determine effects of herbicides with a different mode of action on the biomass, seed production and emergence of field-grown plants. In addition, a single species approach was compared with a mixed species approach. Effects on the biomass of greenhouse and field-grown plants were found to be related at different effect levels, indicating that it might be possible to translate results from greenhouse studies to field situations. However, the use of single-species tests may not be valid. The response of a single plant species to sublethal herbicide dosages differed to the response of the same species grown in a mixture with other species.  相似文献   

12.
Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Implications: Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of climate change includes determination of air quality targets, selections of potential management options, and identification of effective air quality management strategies through decision-making models. The risk-based decision-making framework can also be applied to develop climate-responsive management strategies for the other environmental dimensions and assess costs and benefits of future environmental management policies.  相似文献   

13.
Ellis JB 《Chemosphere》2000,41(1-2):85-91
Alternative risk assessment approaches are reviewed for the evaluation of the ecological status and health of urban receiving waters subject to intermittent pollution events. Performance-based criteria founded on exceedance probabilities and related to the end-of-pipe discharge of chemical-specific substances comprise the conventional basis for setting regulatory standards in both North America and Europe. The difficulties and limitations of this approach, particularly in identifying realistic chronic, sub-lethal toxic risks arising from complex effluents are discussed. The potential role of Toxicity Based Criteria (TBC) for setting ecological consent limits for stormwater effluents is considered and the capabilities and limitations of Direct Toxicity Assessment (DTA) are identified. The inability of DTA procedures to satisfactorily evaluate chronic, sub-lethal risks has led to increasing interest in the potential use of in-situ biomarker techniques for the fingerprinting of stress-response properties as a means of diagnosing risk assessment for integrated urban runoff management.  相似文献   

14.
Five rapid direct toxicity assessment methods were used in three European partner countries to determine the toxicity of single toxicants, mixed toxicants and real industrial wastes. The final aim was to protect microbial degradation of organic wastes in biological treatment processes and hence enhance the quality of treated effluents to be discharged to the environment. Nitrification inhibition, Respirometry, Adenosine triphosphate luminescence and Enzyme inhibition were tested utilising activated sludge as the testing matrix. The Vibrio fischeri toxicity test was used as a surrogate to compare the various microbial bioassays. The IC50 (toxicant concentration eliciting a 50% inhibitory effect) was determined for a number of pollutants including single toxicants Cd, Cr, Cu, Zn, 3,5-dichlorophenol, toluene and linear alkylbenzenesulphonate (LAS); a standard mixture of metals and LAS; a standard mixture of organics and LAS, and 16 industrial effluents. The V. fischeri bioassay was also chosen in order to assess quality control of toxicant preparation during testing in the different laboratories of the partner countries. Comparisons of sensitivity, cost of implementation, cost per test, relevance, and ease of use were made. The most sensitive bioassays were V. fischeri and Nitrification inhibition, however, this depended in the main on the pollutant and mixtures tested. It is recommended that during assessment of wastewater toxicity a suite of tests be used rather than reliance on one particular test.  相似文献   

15.
In the context of the Water Framework Directive (EP and CEU, 2000), management plans have to be set up to monitor and to maintain water quality in groundwater bodies in the EU. In heavily industrialized and urbanized areas, the cumulative effect of multiple contaminant sources is likely and has to be evaluated. In order to propose adequate measures, the calculated risk should be based on criteria reflecting the risk of groundwater quality deterioration, in a cumulative manner and at the scale of the entire groundwater body. An integrated GIS- and flux-based risk assessment approach for groundwater bodies is described, with a regional scale indicator for evaluating the quality status of the groundwater body. It is based on the SEQ-ESO currently used in the Walloon Region of Belgium which defines, for different water uses and for a detailed list of groundwater contaminants, a set of threshold values reflecting the levels of water quality and degradation with respect to each contaminant. The methodology is illustrated with first results at a regional scale on a groundwater body-scale application to a contaminated alluvial aquifer which has been classified to be at risk of not reaching a good quality status by 2015. These first results show that contaminants resulting from old industrial activities in that area are likely to contribute significantly to the degradation of groundwater quality. However, further investigations are required on the evaluation of the actual polluting pressures before any definitive conclusion be established.  相似文献   

16.
Abstract

The inclusion of non-detected chemicals in a health risk assessment may lead, in some cases, to estimated risks that exceed regulatory thresholds, because one must use the detection limit or half of the detection limit. This study presents a methodology which will allow one to estimate appropriate detection limits by conducting a health risk assessment prior to the source sampling program. The advantages and shortcomings of various levels of detail in the risk assessment to determine those detection limits are discussed. The application of the methodology is demonstrated with a case study of the potential health effects of power plant stack emissions.  相似文献   

17.
Goal, Scope and Background In order to evaluate the estrogenic activity of sediments and XAD water extracts of selected sites of the catchment area of the River Neckar, a river system in Southern Germany, an integrative assessment approach was used to assess the ecological hazard potential of endocrine-disrupting compounds in sediment and water. Methods The approach is based on estrogen receptor-mediated vitellogenin synthesis induced in isolated hepatocytes of rainbow trout and quantified in a non-radioactive dot blot/RNAse protection-assay in parallel to comprehensive chemical analyses of estrogenic substances. Results and Discussion Numerous investigated extracts revealed an estrogen activity comparable to that of the positive control (1 nM 17?-estradiol corresponding to 270 ng/L in the test medium). Based on a concentration factor of 30 in the extracts and a recovery of XAD resins of approximately 80 %, 17?-estradiol equivalent concentrations between 20 and 26.7 ng/L could be calculated downstream of a sewage treatment plant (< 0.1 ng/L for a reference site). A comparison of the bioassay-derived Bio-TEQs (toxicity equivalents) and the Chem-TEQs revealed a high correlation with a Pearson coefficient of 0.85, indicating that the same ranking of the samples could be obtained with respect to the endocrine disrupting potential with both chemical and bioanalytical analysis. However, the TEQ concentrations computed from chemical analyses were significantly lower than the bioassay-derived TEQ concentrations. In fact, in none of the samples, more than 14 % of the vitellogenin-inducing potency could be attributed to the substances (steroids, alkylphenols, bisphenol A, diethylstilbestrol) analyzed. A comparison of the endocrine disrupting potential of sediments extracted by the solvents acetone and methanol revealed lower biological effects for acetone-extracted samples. Possible reasons may be a masking of endocrine effects in acetone extracts by cytotoxicity, a low extraction efficiency of the solvent acetone, or anti-estrogen potencies of some extracted sediment compounds. Using a mass balance approach, the contribution of the compounds analyzed chemically (Chem-TEQs) to the total endocrine activity (Bio-TEQs) was calculated. Based on the very low detection limits, particularly of the steroids with their high TEF factors, results revealed that a calculation of the Chem-TEQs is associated with considerable scale inaccuracy: Whereas only 7-15 % of the biological effectiveness (Bio-TEQs) could be explained by endocrine substances identified above the detection limits, the assumption of concentrations slightly below the given detection limits would result in a significant over estimation (137-197 %) of the Bio-TEQs. Even the interassay variation of the dot blot assay with different fish donors for primary hepatocyte (factor 2 - 2.5) is relatively low, when compared to the large range of the Chem-TEQ concentrations (factor 20) obtained when applying different modes of calculation. Conclusions and Outlook Overall, only a minor portion of the endocrine activity detected by bioassays could be linked to compounds identified by chemical analysis. In vitro assays for assessment of endocrine activities are useful as sensitive integrating methods that provide quantitative estimates of the total activity of particular receptor-mediated responses. Although discrepancies may also result from different bioanalytical approaches, it is overall likely that bioanalytical and not chemical analytical approaches give the correct estimate of endocrine disrupting potencies in environmental samples. As a conclusion, assessment of endocrine disruption based on chemical analysis alone does not appear sufficient and further research into the spectrum of substances with potential endocrine activity as well as into additive or even synergistic effects in complex environmental samples is urgently needed.  相似文献   

18.
The aim of this study was to validate a multi-trial biomarker approach for the evaluation of toxicological risk due to benzo(alpha)pyrene. Carcinus aestuarii, exposed to increasing concentrations of B(alpha)P in the water, was used as the bioindicator organism. A set of biomarkers were tested in order to: identify biological materials for biomarker and residue analysis; determine a group of sensitive techniques for the assessment of PAH contamination; investigate correlation between responses at different levels of biological organisation. The results underlined that BPMO activities in hepatopancreas and gills were a good biomarker of exposure to PAH-type compounds. B esterases activities in hemolymph and porphyrin patterns in excreta could be proposed as a non-destructive approach for evaluating chemical exposure in this species.  相似文献   

19.

Background, aim, and scope  

This review deals with publications concerning the mode of action of Bt proteins and their potential synergism with extrinsic factors. The aim was to assess the impact of those factors especially regarding selectivity and efficacy of Bt toxins and to discuss possible gaps in current risk assessment of genetically engineered plants expressing Bt toxins.  相似文献   

20.
The release of hospital wastewater into the urban sewer networks contributes to the general contamination of aquatic media by pharmaceutical residues. These residues include bio-accumulative pharmaceuticals that lead to increased risk for ecosystems because they can concentrate in organisms and food chains, and therefore reach toxic levels. In order to assess the ecotoxicological risks linked to this particular category of residues, we have developed a specific method, by combining a theoretical calculation of pollutant concentrations in organisms to estimate Body Residue (BR), and ecotoxicity biomarkers in fish cell lines, enabling the calculation of a Critical Body Residue (CBR). This method finally results in the calculation of a specific risk quotient (Qb = BR/CBR), characterizing the risk linked to this type of pollutant. This method was applied to mitotane, a bio-accumulative pharmaceutical typically found in hospital wastewater, in the framework of an exposure scenario corresponding to the discharge of all the hospital wastewaters into the Rhone River which flows through the city of Lyon, France. This approach leads to risk quotients (Qb and Qbg) much higher than those found with the classical approach, i.e. Q = PEC/PNEC (Predictive Environmental Concentration/Predictive Non Effect Concentration) = 0.0006. This difference in the appreciation of risk is important when using cytotoxicity as the criterion for measuring the toxicity of mitotane (Qb = 0.056) and it is even greater when the criterion used is genotoxicity (Qbg = 6.8). This study must be now consolidated by taking the biomagnification of the pharmaceuticals into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号