首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor-oriented source apportionment models are often used to identify sources of ambient air pollutants and to estimate source contributions to air pollutant concentrations. In this study, a PCA/APCS model was applied to the data on non-methane hydrocarbons (NMHCs) measured from January to December 2001 at two sampling sites: Tsuen Wan (TW) and Central & Western (CW) Toxic Air Pollutants Monitoring Stations in Hong Kong. This multivariate method enables the identification of major air pollution sources along with the quantitative apportionment of each source to pollutant species. The PCA analysis identified four major pollution sources at TW site and five major sources at CW site. The extracted pollution sources included vehicular internal engine combustion with unburned fuel emissions, use of solvent particularly paints, liquefied petroleum gas (LPG) or natural gas leakage, and industrial, commercial and domestic sources such as solvents, decoration, fuel combustion, chemical factories and power plants. The results of APCS receptor model indicated that 39% and 48% of the total NMHCs mass concentrations measured at CW and TW were originated from vehicle emissions, respectively. 32% and 36.4% of the total NMHCs were emitted from the use of solvent and 11% and 19.4% were apportioned to the LPG or natural gas leakage, respectively. 5.2% and 9% of the total NMHCs mass concentrations were attributed to other industrial, commercial and domestic sources, respectively. It was also found that vehicle emissions and LPG or natural gas leakage were the main sources of C(3)-C(5) alkanes and C(3)-C(5) alkenes while aromatics were predominantly released from paints. Comparison of source contributions to ambient NMHCs at the two sites indicated that the contribution of LPG or natural gas at CW site was almost twice that at TW site. High correlation coefficients (R(2) > 0.8) between the measured and predicted values suggested that the PCA/APCS model was applicable for estimation of sources of NMHCs in ambient air.  相似文献   

2.
ABSTRACT

Profiles of the sources of nonmethane organic compounds (NMOCs) were developed for emissions from vehicles, petroleum fuels (gasoline, liquefied petroleum gas [LPG], and natural gas), a petroleum refinery, a smelter, and a cast iron factory in Cairo, Egypt. More than 100 hydrocarbons and oxygenated hydrocarbons were tentatively identified and quantified. Gasoline-vapor and whole-gasoline profiles could be distinguished from the other profiles by high concentrations of the C5 and C6 saturated hydrocarbons. The vehicle emission profile was similar to the whole-gasoline profile, with the exception of the unsaturated and aromatic hydrocarbons, which were present at higher concentrations in the vehicle emission profile. High levels of the C2-C4 saturated hydrocarbons, particularly n-butane, were characteristic features of the petroleum refinery emissions. The smelter and cast iron factory emissions were similar to the refinery emissions; however, the levels of benzene and toluene were greater in the former two sources. The LPG and natural gas emissions contained high concentrations of n-butane and ethane, respectively. The NMOC source profiles for Cairo were distinctly different from profiles for U.S. sources, indicating that NMOC source profiles are sensitive to the particular composition of petroleum fuels that are used in a location.  相似文献   

3.
Non-methane hydrocarbon (NMHC) source profiles consisting of 35 hydrocarbon species were measured for vehicle and petroleum refinery emissions. Refueling emissions were found to be sensitive to the grade and volatility class of fuel and to be composed mainly of saturated hydrocarbons such as n-butane and 2-methy I butane. Unsaturated and aromatic hydrocarbons, which are released from the tailpipe of vehicles as products of combustion and unburned fuel, were more prevalent in roadway emissions comprising approximately 34 percent of the total NMHCs. Cold-start emissions were nearly indistinguishable from the roadway emission profile. The only significant differences were in toluene, ethylene and acetylene, which may be related to the efficiency of combustion when the vehicle is initially started. Saturated hydrocarbon distributions of the hot-soak profiles were found to be similar to refueling emissions. The only significant difference in the profiles was in the aromatic content, which may be related to the grade of the gasoline and the effectiveness of evaporative emission control devices. The temporal variation in refinery emissions was significant and may be related to variations in refinery activities such as the production and blending of feed stocks to produce different fuels.  相似文献   

4.
Characterising sources and sinks of rural VOC in eastern France   总被引:2,自引:0,他引:2  
Fifty non-methane hydrocarbons (NMHC) and seventeen carbonyl compounds were measured at a French rural site from 1997 to 2001, as part of the EMEP programme. Data handling was based on an original source-receptor approach. First, the examination of the levels and trends was completed by the comparison of the seasonal distribution of rural and urban VOC/acetylene ambient ratios. This analysis has shown that most of the compounds derived from mixing and photochemical transformation of mid-range transported urban pollutants from the downwind urban area. Then, identified sources and sinks were temporally apportioned. Urban air masses mixing explains, at least, 80% of the wintertime levels of anthropogenic NMHC and isoprene. In summer, photochemistry dominates the day-to-day distribution of anthropogenic NMHC whilst summertime isoprene is also controlled by in-situ biogenic emissions. Then, the results of C(1)-C(3) carbonyls were discussed with respect to their direct biogenic and anthropogenic emissions and photochemical production through the [carbonyl/auto-exhaust tracers] emission ratio. Diluted vehicle exhaust emissions mainly contribute to the total content of lower aldehydes in winter while other processes control lower ketones. Secondary production is predominant in summer with at least a 50% high intensity. Its dependence upon temperature and radiation is also demonstrated. Finally, the importance of the primary and secondary biogenic production of acetone and formaldehyde is assessed. In particular, biogenic contribution would explain 37 +/- 25% of acetone levels in summer.  相似文献   

5.
The infiltration of vehicle emissions into a house from the attached garage was studied for 16 homes of differing designs using the same extensively characterized vehicle at each home. Before the in-home measurement program, the cold-start and hot-start tailpipe emissions and hot-soak evaporative emissions from a 1993 Buick Regal were measured using standard vehicle emissions measurement methods. The emissions were chemically characterized for methane, nonmethane hydrocarbons (NMHC), and carbonyl compounds. The in-home measurements occurred over two winter seasons (1997-1998 and 1998-1999) in Ottawa, Ontario, Canada. Samples of indoor air and garage atmosphere were characterized for carbon monoxide, carbon dioxide, methane, NMHC, and carbonyl compounds. During the second year, real-time measurements of carbon, carbon dioxide, and total hydrocarbons were made to determine when and for how long the emissions plume infiltrates the house. Chemical mass balance modeling results using 31 NMHC species suggest that between 9 and 71% of the concentrations measured in the house during the hot-soak test and between 13 and 85% of the concentrations measured in the house during the cold-start test could be attributed to vehicle emissions infiltrating from the garage. In contrast, increases in carbonyl compound concentrations caused by the vehicle were difficult to detect above the already significant levels found in the houses.  相似文献   

6.
Refineries are a source of emissions of volatile hydrocarbons that contribute to the formation of smog and ozone. Fugitive emissions of hydrocarbons are difficult to measure and quantify. Currently these emissions are estimated based on standard emission factors for the type and use of equipment installed. Differential absorption light detection and ranging (DIAL) can remotely measure concentration profiles of hydrocarbons in the atmosphere up to several hundred meters from the instrument. When combined with wind speed and direction, downwind vertical DIAL scans can be used to calculate mass fluxes of the measured gas leaving the site. Using a mobile DIAL unit, a survey was completed at a Canadian refinery to quantify fugitive emissions of methane, C2+ hydrocarbons, and benzene and to apportion the hydrocarbon emissions to the various areas of the refinery. Refinery fugitive emissions as measured with DIAL during this demonstration study were 1240 kg/hr of C2+ hydrocarbons, 300 kg/hr of methane, and 5 kg/hr of benzene. Storage tanks accounted for over 50% of the total emissions of C2+ hydrocarbons and benzene. The coker area and cooling towers were also significant sources. The C2+ hydrocarbons emissions measured during the demonstration amounted to 0.17% of the mass of the refinery hydrocarbon throughput for that period. If the same loss were repeated throughout the year, the lost product would represent a value of US$3.1 million/yr (assuming US$40/bbl). The DIAL-measured hourly emissions of C2+ hydrocarbons were 15 times higher than the emission factor estimates and gave a different perspective on which areas of the refinery were the main source of emissions. Methods, such as DIAL, that can directly measure fugitive emissions would improve the effectiveness of efforts to reduce emissions, quantify the reduction in emissions, and improve the accuracy of emissions data that are reported to regulators and the public.  相似文献   

7.
The Desert Research Institute conducted an on-road mobile source emission study at a traffic tunnel in Van Nuys, California, in August 2010 to measure fleet-averaged, fuel-based emission factors. The study also included remote sensing device (RSD) measurements by the University of Denver of 13,000 vehicles near the tunnel. The tunnel and RSD fleet-averaged emission factors were compared in blind fashion with the corresponding modeled factors calculated by ENVIRON International Corporation using U.S. Environmental Protection Agency's (EPA's) MOVES2010a (Motor Vehicle Emissions Simulator) and MOBILE6.2 mobile source emission models, and California Air Resources Board's (CARB's) EMFAC2007 (EMission FACtors) emission model. With some exceptions, the fleet-averaged tunnel, RSD, and modeled carbon monoxide (CO) and oxide of nitrogen (NOx) emission factors were in reasonable agreement (±25%). The nonmethane hydrocarbon (NMHC) emission factors (specifically the running evaporative emissions) predicted by MOVES were insensitive to ambient temperature as compared with the tunnel measurements and the MOBILE- and EMFAC-predicted emission factors, resulting in underestimation of the measured NMHC/NOx ratios at higher ambient temperatures. Although predicted NMHC/NOx ratios are in good agreement with the measured ratios during cooler sampling periods, the measured NMHC/NOx ratios are 3.1, 1.7, and 1.4 times higher than those predicted by the MOVES, MOBILE, and EMFAC models, respectively, during high-temperature periods. Although the MOVES NOx emission factors were generally higher than the measured factors, most differences were not significant considering the variations in the modeled factors using alternative vehicle operating cycles to represent the driving conditions in the tunnel. The three models predicted large differences in NOx and particle emissions and in the relative contributions of diesel and gasoline vehicles to total NOx and particulate carbon (TC) emissions in the tunnel.

Implications: Although advances have been made to mobile source emission models over the past two decades, the evidence that mobile source emissions of carbon monoxide and hydrocarbons in urban areas were underestimated by as much as a factor of 2–3 in past inventories underscores the need for on-going verification of emission inventories. Results suggest that there is an overall increase in motor vehicle NMHC emissions on hot days that is not fully accounted for by the emission models. Hot temperatures and concomitant higher ratios of NMHC emissions relative to NOx both contribute to more rapid and efficient formation of ozone. Also, the ability of EPA's MOVES model to simulate varying vehicle operating modes places increased importance on the choice of operating modes to evaluate project-level emissions.  相似文献   

8.
Chemical composition of major VOC emission sources in the Seoul atmosphere   总被引:6,自引:0,他引:6  
Na K  Kim YP  Moon I  Moon KC 《Chemosphere》2004,55(4):585-594
This paper describes a chemical analysis of volatile organic compounds (VOCs) for five emission sources in Seoul. The source categories included motor vehicle exhaust, gasoline evaporation, paint solvents, natural gas and liquefied petroleum gas (LPG). These sources were selected because they have been known to emit significant quantities of VOCs in the Seoul area (more than 5% of the total emission inventory). Chemical compositions of the five emission sources are presented for a group of 45 C2-C9 VOCs. Motor vehicle exhaust profiles were developed by conducting an urban tunnel study. These emissions profiles were distinguished from the other emission profiles by a high weight percentage of butanes over seasons and propane in the wintertime. It was found that this is due to the wide use of butane-fueled vehicles. To obtain gasoline vapor profiles, gasoline samples from five major brands for each season were selected. The brands were blended on the basis of the marketshare of these brands in Seoul area. Raoult's law was used to calculate gasoline evaporative compositions based on the liquid gasoline compositions. The measured and estimated gasoline vapor compositions were found to be in good agreement. Vehicle and gasoline evaporation profiles were made over seasons because of the seasonal change in their compositions. Paint solvent emissions profiles were produced based on a product-use survey and sales figures. These profiles are a composite of four major oil-based paints and thinning solvent. The source profile of natural gas was made on a methane-free basis. It was found that Ethane and propane were the most abundant compounds accounting for 95% of the natural gas composition. LPG was largely composed of propane and ethane and the remaining components were minor contributors.  相似文献   

9.
Measurements of speciated non-methane hydrocarbons (NMHCs) were conducted in an ozone non-attainment metropolis with pronounced industrial emissions in addition to traffic ones. Highly variable and complex natures of industrial sources make their composition profiles difficult to determine. In the circumstances of no reliable source profiles, two simple complementary approaches were attempted to characterize sources of NMHCs. First, a robust vehicular indicator, 3-methylpentane (3MC5A), which is an intrinsic component of gasoline, was used to estimate contributions of traffic versus non-traffic sources for major NMHCs with high ozone-forming potentials (OFPs), such as ethene, toluene, xylene, isoprene, etc. Second, the method of principal component analysis (PCA) was employed to further discern non-traffic emissions into various source groups. A total of 454 ambient samples were sampled in the urban-industrial complex metropolis (Kaohsiung, Taiwan) to build up a large dataset to be tested by the two complementary approaches. It was found that four types of emissions, i.e., traffic, household fuel leakage, industrial, and biogenic, were responsible for the observed ambient NMHCs. The industrial contribution was significant for ethene and toluene (with 48–67% and 33–62%, respectively), whereas xylene was found to be mainly vehicular. In addition, isoprene revealed its biogenic nature. OFPs arising from vehicular, industrial and biogenic contributions could be further assessed for the purpose of emission control of NMHCs in the ozone non-attainment area.  相似文献   

10.
The ambient PM10 and PM2.5 data collected during the fall and winter portions of the 1995 Integrated Monitoring Study (IMS95) were used to conduct Chemical Mass Balance (CMB) Modeling to determine source contribution estimates. Data from the core and saturation monitoring sites provided an extensive database for evaluating the spatial and temporal variations of contributing sources. Geological sources dominated fall samples, while secondary ammonium nitrate and carbonaceous sources were the largest contributors for winter samples. Secondary ammonium nitrate concentrations were uniform across all sites during both the fall and winter. Site-to-site variability was primarily due to differences in geological contributions in the fall, and carbonaceous source contributions in the winter. During the winter, diurnal profiles of particulate matter (PM) were driven by variations in carbonaceous sources at urban sites, and by variations in secondary ammonium nitrate at rural sites. Although records of day-specific PM activities were recorded during the study, no correlation was observed between 24-h CMB results and specific activities. The ambient data collected during IMS95 was also used to evaluate the adequacy of the emissions inventory. Comparison of ambient and emissions based ratios of NMHC/NOx, PM/NOx, CO/NOx, and SOx/NOx suggested that emissions of NMHC and CO in some locations may be underestimated, while emissions for PM and SOx may be overestimated. Comparison of fractional primary CMB source contribution estimates to corresponding fractional emissions estimates indicated that geological sources were overemphasized in the inventory, while carbonaceous sources were underrepresented.  相似文献   

11.
Non-methane hydrocarbons (NMHCs) are known to have an important role on air quality due to their high reactivity. NMHC analysis has been performed on 148 ambient air samples collected at five different sites in the Kanto area (Tokyo metropolitan area and surrounding six prefectures) of Japan in summer and winter of 2008, and fifty NMHCs have been determined and quantified. A field measurement campaign has been conducted at one of the busiest intersections in Tokyo metropolitan area in winter of 2008. NMHC emissions are evaluated through comparison of distributions of individual NMHCs emitted from motor vehicles, which are estimated from the measurements, with those determined from the current emissions inventory. The comparison revealed that the measured distributions of acetylene, ethylene and toluene showed a good agreement with those estimated from the emissions inventory (the values estimated from the measurements are a factor of 1.5, 0.56 and 2.3 larger than the emissions inventory in median, respectively), however, propane and isobutane are found to be significantly underestimated in the emissions inventory (the measured values were a factor of 18 and 5.1 larger than the emissions inventory, respectively). The significant underestimate of propane can be explained by that the current emissions inventory does not consider emissions from liquefied propane gas (LPG) fueled vehicles. However, for isobutane, reasons for the underestimate are still unclear. Another field measurement has been conducted in summer of 2008, where the air samples have been collected at three different sites on the ground and by a helicopter as well. Remarkable high concentrations of 1-butene and cis- and trans-2-butenes have been sporadically observed in the samples collected at Urayasu in the coastal area of Tokyo bay. Calculated propylene equivalent (PE) concentrations of butenes revealed that those have a significantly important role in ozone formation when the air plume is affected by emissions from their emission sources. The PE concentrations of butenes varied from 0.1 to 39 ppbC, and accounted for 1.5–75% of total PE concentrations at Urayasu. Most of the continuous air quality monitoring stations does not record concentrations of individual hydrocarbons, therefore, the importance of reactive and low concentration hydrocarbon such as butenes might be overlooked in the current emissions inventory and/or air quality model. In this paper, the reliability of NMHC emissions is evaluated based on the field measurements. Their possible impacts on air quality in the Kanto area are discussed as well, based on the calculated propylene equivalent concentrations.  相似文献   

12.
Compositions of volatile organic compound (VOC) emissions from painting applications and printing processes were sampled and measured by gas chromatography–mass spectrometry/flame ionization detection (GC–MS/FID) in Beijing. Toluene and C8 aromatics were the most abundant species, accounting for 76% of the total VOCs emitted from paint applications. The major species in printing emissions included heavier alkanes and aromatics, such as n-nonane, n-decane, n-undecane, toluene, and m/p-xylene. Measurements of VOCs obtained from furniture paint emissions in 2003 and 2007 suggest a quick decline in benzene levels associated with formulation changes in furniture paints during these years. A comparison of VOC source profiles for painting and printing between Beijing and other parts of the world showed significant region-specific discrepancies, probably because of different market demands and environmental standards. We conducted the evaluation of the source reactivities for various VOC emission sources. The ozone formation potential (OFP) for unit mass of VOCs source emissions is the highest for paint applications. Substituting solvent-based paints by water-based in Beijing will lead to an OFP reduction of 152,000 tons per year, which is more than 1/4 of the OFPs for VOCs emissions from vehicle exhaust in the city.  相似文献   

13.
For at least 30 years, ozone (O3) levels on weekends in parts of California's South Coast (Los Angeles) Air Basin (SoCAB) have been as high as or higher than on weekdays, even though ambient levels of O3 precursors are lower on weekends than on weekdays. A field study was conducted in the Los Angeles area during fall 2000 to test whether proposed relationships between emission sources and ambient nonmethane hydrocarbon (NMHC) and oxides of nitrogen (NOx) levels can account for observed diurnal and day-of-week variations in the concentration and proportions of precursor pollutants that may affect the efficiency and rate of O3 formation. The contributions to ambient NMHC by motor vehicle exhaust and evaporative emissions, estimated using chemical mass balance (CMB) receptor modeling, ranged from 65 to 85% with minimal day-of-week variation. Ratios of ambient NOx associated with black carbon (BC) to NOx associated with carbon monoxide (CO) were approximately 1.25 +/- 0.22 during weekdays and 0.76 +/- 0.07 and 0.52 +/- 0.07 on Saturday and Sunday, respectively. These results demonstrate that lower NOx emissions from diesel exhaust can be a major factor causing lower NOx mixing ratios and higher NMHC/NOx ratios on weekends. Nonmobile sources showed no significant day-of-week variations in their contributions to NMHC. Greater amounts of gasoline emissions are carried over on Friday and Saturday evenings but are, at most, a minor factor contributing to higher NMHC/NOx ratios on weekend mornings.  相似文献   

14.
Representative PM2.5 and PM10 source emissions were sampled in Texas during the Big Bend Regional Aerosol Visibility and Observa (BRAVO) study. Chemical source profiles for elements, ions, and carbon fractions of 145 samples are reported for paved and unpaved road dust, soil dust, motor vehicle exhaust, vegetative burning, four coal-fired power stations, an oil refinery catalytic cracker, two cement kilns, and residential meat cooking. Several samples were taken from each emitter and source type, and these were averaged by source type, and in source subgroups based on commonality of chemical composition. The standard deviation represents the variability of the chemical mass fractions. BRAVO profiles differed in some respects from profiles measured elsewhere. High calcium abundances in geological dust, high selenium abundances in coal-fired power stations, and high antimony abundances in oil refinery catalytic cracker emissions were found. Abundances of eight thermally evolved carbon fractions [Atmos. Environ. 28 (15) (1994) 2493] differ among combustion sources, and a Monte Carlo simulation demonstrates that these differences are sufficient to differentiate among several carbon-emitters.  相似文献   

15.
Ambient air samples were collected at 13 air quality monitoring stations in Kaohsiung city, Kaohsiung county, and Pingtung county (KKP) to investigate the composition and spatial distribution of C2–C10 non-methane hydrocarbons (NMHCs) in southern Taiwan. Ozone formation potentials (OFPs) of NMHCs were estimated using maximum incremental reactivity (MIR) and kOH method (reactivity of NMHC with OH radical) to assess the relative effects of hydrocarbons on ozone formation. The measurements showed that mixing ratios of toluene, ethene, ethyne, ethane, isopantane and propane were the highest among all measured species at most of the sampling sites. Nevertheless, considering both the photochemical reactivities and mixing ratios of all the measured species, toluene, xylene, ethene and propene were calculated to have the highest OFPs and reactivities. The OFPs and reactivities assessed by the MIR and kOH methods for the four compounds accounted for 54.5% and 39.3% of all the measured species. Larger benefit margin of ozone abatement may be obtained by reducing emissions of a group of key species with high OFPs.2,2-dimethylbutane (22DMC4) was used as an indicator of traffic emissions to distinguish traffic from non-traffic contributions of key species in Kaohsiung metropolitan area. It revealed that the contribution of non-traffic source was significant for toluene, whereas xylene was found to be primarily from the traffic source in Kaohsiung metropolitan area during the sampling periods.  相似文献   

16.
Since 1990, the MERA (MEsure des Retombées Atmosphériques, French acronym for background air pollution monitoring) network has been focused on the composition of the lower troposphere within the EMEP program. In particular, 46 non-methane hydrocarbon (NMHC) concentrations have been measured between 1997 and 2006 at three MERA sites.The analysis of temporal trends using Mann-Kendall and Sen methods showed a global decrease of anthropogenic NMHC. These results are in accordance with the trends observed on other sites in Europe and follow the decrease of VOCs emissions in France. Nevertheless the concentrations of long-life species like ethane seem to remain steady showing the growing influence of most distant source areas. In addition isoprene concentrations are typically higher in France than in other countries in Europe and slightly rising. Data analysis was performed using positive matrix factorization (PMF). Five similar PMF factors are identified as aged profiles for the three sites. The examination of factor contributions made it possible to determine a hierarchy in source influence. A higher contribution of evaporative sources was observed on the southern site while residential heating was the main factor for the other two. This work was completed by a clustering analysis (K-means) of air mass trajectories in order to apportion source contribution depending on air mass origins. Two main groups have been distinguished: (1) older and diluted air masses from an oceanic origin; and (2) anthropogenic and closer sources indicating continental influence.  相似文献   

17.
Abstract

Refineries are a source of emissions of volatile hydrocarbons that contribute to the formation of smog and ozone. Fugitive emissions of hydrocarbons are difficult to measure and quantify. Currently these emissions are estimated based on standard emission factors for the type and use of equipment installed. Differential absorption light detection and ranging (DIAL) can remotely measure concentration profiles of hydrocarbons in the atmosphere up to several hundred meters from the instrument. When combined with wind speed and direction, downwind vertical DIAL scans can be used to calculate mass fluxes of the measured gas leaving the site. Using a mobile DIAL unit, a survey was completed at a Canadian refinery to quantify fugitive emissions of methane, C2+ hydrocarbons, and benzene and to apportion the hydrocarbon emissions to the various areas of the refinery. Refinery fugitive emissions as measured with DIAL during this demonstration study were 1240 kg/hr of C2+ hydrocarbons, 300 kg/hr of methane, and 5 kg/hr of benzene. Storage tanks accounted for over 50% of the total emissions of C2+ hydrocarbons and benzene. The coker area and cooling towers were also significant sources. The C2+ hydrocarbons emissions measured during the demonstration amounted to 0.17% of the mass of the refinery hydrocarbon throughput for that period. If the same loss were repeated throughout the year, the lost product would represent a value of US$3.1 million/yr (assuming US$40/bbl). The DIAL-measured hourly emissions of C2+ hydrocarbons were 15 times higher than the emission factor estimates and gave a different perspective on which areas of the refinery were the main source of emissions. Methods, such as DIAL, that can directly measure fugitive emissions would improve the effectiveness of efforts to reduce emissions, quantify the reduction in emissions, and improve the accuracy of emissions data that are reported to regulators and the public.  相似文献   

18.
Emission rate vs temperature algorithms for different vegetation types, including deciduous, coniferous and agricultural sources, were used with available biomass and land use data for the U.S. to develop a national emission inventory with county spatial and monthly temporal scales. The estimated total NMHC emission rate from the U.S. is 30.7 Mt annually; more than half of these emissions occur in the summer, and approximately half arise in the SE and SW U.S. Total emission rates of isoprene from deciduous forest and α-pinene from deciduous and coniferous forests are 4.9 and 6.6 Mt annually. Emissions from agricultural crops contribute less than 3 % of the annual total. The average flux of biogenic NMHC in the U.S. is estimated to be 450 μgm−2h−1which is 20 times less than reported emissions of anthropogenic NMHC averaged over urban land areas in the U.S. Geochemical NMHC emissions from hydrocarbon rich soils in the U.S. are estimated to be negligible compared to vegetative sources. The uncertainty in the inventory is estimated to be on the order of a factor of three.  相似文献   

19.
On-road vehicle emission rates of nonmethane hydrocarbons (NMHCs) were measured in two tunnels in Milwaukee, WI, in summer 2000 and winter 2001. Seasonal ambient temperatures in the Midwestern United States vary more widely than in locations where most studies of NMHC emissions from vehicle fleets have been conducted. Ethanol is the added fuel oxygenate in the area, and, thus, emissions measured here are of interest as other regions phase out methyl tertiary butyl ether and increase the use of ethanol. Total emissions of NMHCs in three types of tunnel tests averaged 4560 +/- 800 mg L(-1) fuel burned (average +/- standard error). To investigate the impact of cold start on vehicle emissions, samples were collected as vehicles exited a parking structure in subzero temperatures. NMHC emissions in the subzero cold-start test were 8830 +/- 190 mg L(-1) fuel-nearly double the tunnel emissions. Comparison of ambient data for the Milwaukee area with tunnel emissions showed the impact of seasonal differences in fuels and emissions on the urban atmosphere. Composition of fuel samples collected from area gas stations in both seasons was correlated with vehicle emissions; the predominant difference was increased winter emissions of lighter hydrocarbons present in winter gasoline. A chemical mass balance model was used to determine the contributions of whole gasoline and gasoline headspace vapors to vehicle emissions in the tunnel and cold-start tests, which were found to vary with season. Results of the mass balance model also indicate that partially combusted components of gasoline are a major contributor to emissions of aromatic compounds and air toxic compounds, including benzene, toluene, xylenes, napthalene, and 1,3-butadiene, whereas air toxics hexane and 2,2,4-trimethylpentane are largely attributed to gasoline and headspace vapors.  相似文献   

20.
Mass emissions of non-methane hydrocarbon (NMHC) from 26 pre-1986 and 56 post-1985 catalyst-equipped in-service vehicles were determined from measurements made on a chassis dynamometer using an urban drive cycle. Evaporative emissions were measured on a subset (4 pre-1986 and 8 post-1985) of these vehicles. Average ADR emissions (mg/km) of the individual HCs from the older pre-1986 vehicles were generally 4–7 times the emissions from newer catalyst-equipped vehicles. Evaporative emissions from the older vehicles are also much higher than those of newer vehicles. Exhaust from newer catalyst-equipped vehicles had lower proportions of substituted aromatics and alkenes and higher proportions of lower molecular weight alkanes. The effect of fuel type on the exhaust emissions was also investigated by refuelling 9 of the pre-1986 vehicles with both unleaded and leaded petrol. A 20–40% reduction in HC mass emissions was observed when unleaded petrol was used instead of leaded petrol. Reactivities of the emissions and the contributions from different classes of compounds are also reported. The specific reactivity of the exhaust emissions from newer vehicles was lower than that for older vehicles owing to the smaller proportions of highly reactive alkenes and substituted aromatic species. Moreover, as older vehicles have higher average mass emissions, when considered on a per-km basis, the pre-1986 vehicles have a greater ozone-forming potential than post-1985 vehicles. The specific reactivities of the NMHC (gO3/gNMHC) of both the heat build and hot soak evaporative emissions were much lower than the exhaust emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号