首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The present study aims to investigate the EDTA catalyzed reduction of nitrate (NO 3 ? ) by zero-valent bimetallic (Fe?CAg) nanoparticles (ZVBMNPs) in aqueous medium and to enumerate the effect of temperature, solution pH, ZVBMNPs dose and EDTA concentration on NO 3 ? reduction. Batch experimental data were generated using a four-factor Box?CBehnken design. Optimization modeling was performed using the response surface method for maximizing the reduction of NO 3 ? by ZVBMNPs. Significance of the independent variables and their interactions were tested by the analysis of variance and t test statistics. The model predicted maximum reduction capacity (340.15?mg?g?1 NO 3 ? ) under the optimum conditions of temperature, 60?°C; pH?4; dose, 1.0?g?l?1; and EDTA concentration, 2.0?mmol?l?1 was very close to the experimental value (338.62?mg?g?1) and about 16?% higher than the experimentally determined capacity (291.32?mg?g?1). Study demonstrated that ZVBMNPs had higher reduction efficiency than Fe0 nanoparticles for NO 3 ? . EDTA significantly enhanced the NO 3 ? reduction by ZVBMNPs. The EDTA catalyzed reduction of NO 3 ? by ZVBMNPs can be employed for the effective decontamination of water.  相似文献   

2.

Background, aims, and scope

Preschool indoor air quality (IAQ) is believed to be different from elementary school or higher school IAQ and preschool is the first place for social activity. Younger children are more susceptible than higher-grade children and spend more time indoors. The purpose of this study was to compare the indoor air quality by investigating the concentrations of airborne particulates and gaseous materials at preschools in urban and rural locations in Korea.

Methods

We investigated the concentrations of airborne particulates and gaseous materials in 71 classrooms at 17 Korean preschools. For comparison, outdoor air was sampled simultaneously with indoor air samples. Airborne concentrations of total suspended particulates, respirable particulates, lead, asbestos, total volatile organic compounds and components, formaldehyde, and CO2 were measured with National Institute for Occupational Safety and Health and/or Environmental Protection Agency analytical methods.

Results

The concentration profiles of the investigated pollutants in indoor and urban settings were higher than those in outdoor and rural areas, respectively. The ratios of indoor/outdoor concentrations (I/O) of particulates and gaseous pollutants were characterized in urban and rural preschools. Total dust concentration was highest in urban indoor settings followed by urban outdoor, rural indoor, and rural outdoor locations with an I/O ratio of 1.37 in urban and 1.35 in rural areas. Although I/O ratios of lead were close to 1, lead concentrations were much higher in urban than in rural areas. The I/O ratio of total VOCs was 2.29 in urban and 2.52 in rural areas, with the highest level in urban indoor settings. The I/O ratio of formaldehyde concentrations was higher in rural than in urban areas because the outdoor rural level was much lower than the urban concentration. Since an I/O ratio higher than 1 implies the presence of indoor sources, we concluded that there are many indoor sources in preschools.

Conclusions

We confirmed that pollutants in indoor and urban settings were higher than those in outdoor and rural areas, respectively. Preschool children are expected to spend more time inside preschool facilities and therefore to be more exposed to pollutants. As far as we know, preschool IAQ is different from elementary school or higher school IAQ. Also, they are more vulnerable than higher-grade children. We found that the indoor and urban concentration profiles of the studied pollutants in preschools were higher than those in outdoor and rural areas. We believe that our findings may be useful for understanding the potential health effects of exposure and intervention studies in preschools.  相似文献   

3.
Several studies have investigated the health of children attending schools located near busy roads. In this study, we have measured personal exposure to traffic-related pollutants in children to validate exposure classification based on school location. Personal exposure to PM2.5, soot, NOx and NO2 was measured during four 48-h periods. The study involved 54 children attending four different schools, two of which were located within 100 m of a major road (one ring road and one freeway) and the other two were located at a background location in the city of Utrecht, The Netherlands. Outdoor monitoring was conducted at all school sites, during the personal measurements. A questionnaire was administered on time activity patterns and indoor sources at home. The outdoor concentration of soot was 74% higher at the freeway school compared to its matched background school. Personal exposure to soot was 30% higher. For NOx the outdoor concentration was 52% higher at the freeway school compared to its background school. The personal concentration of NOx was 37% higher for children attending the freeway school. Differences were smaller and insignificant for PM2.5 and NO2. No elevated personal exposure to air pollutants was found for the children attending the school near the ring road. We conclude that the school's proximity to a freeway can be used as a valid estimate of exposure in epidemiological studies on the effects of the traffic-related air pollutants soot and NOx in children.  相似文献   

4.

Background, aim

The aims of the NORMACAT project are: to develop tools and unbiased standardized methods to measure the performance and to validate the safety of new materials and systems integrating photocatalysis, to develop new photocatalytic media with higher efficiency and to give recommendations aimed at improving the tested materials and systems.

Method

To achieve this objective, it was necessary to design standardized test benches and protocols to assess photocatalytic efficiency of materials or systems used in the treatment of volatile organic compounds (VOCs) and odour under conditions close to applications. The tests are based on the validation of robust analytical methods at the parts per billion by volume level that not only follow the disappearance of the initial VOCs but also identify the secondary species and calculate the mineralization rates.

Results

The first results of inter-laboratory closed chamber tests, according to XP B44-013 AFNOR standard, are described. The photocatalytic degradation of mixtures of several defined pollutants under controlled conditions (temperature, relative humidity, initial concentration) was carried out in two independent laboratories with the same photocatalytic device and with various analytical procedures. Comparison of the degradation rate and of the mineralization efficiency allowed the determination of the clean air delivery rate in both cases. Formaldehyde was the only by-product detected during photocatalytic test under standardized experimental conditions. The concentration of transient formaldehyde varied according to the initial VOC concentration. Moreover the photocatalytic reaction rate of formaldehyde in mixture with other pollutants was analysed. It was concluded that formaldehyde concentration did not increase with time.

Conclusion??perspective

This type of experiment should allow the comparison of the performances of different photoreactors and of photocatalytic media under controlled and reproducible conditions against mixtures of pollutants including formaldehyde.  相似文献   

5.
Characterization of groundwater quality allows the evaluation of groundwater pollution and provides information for better management of groundwater resources. This study characterized the shallow groundwater quality and its spatial and seasonal variations in the Lower St. Johns River Basin, Florida, USA, under agricultural, forest, wastewater, and residential land uses using field measurements and two-dimensional kriging analysis. Comparison of the concentrations of groundwater quality constituents against the US EPA’s water quality criteria showed that the maximum nitrate/nitrite (NO x ) and arsenic (As) concentrations exceeded the EPA’s drinking water standard limits, while the maximum Cl, SO 4 2?? , and Mn concentrations exceeded the EPA’s national secondary drinking water regulations. In general, high kriging estimated groundwater NH 4 + concentrations were found around the agricultural areas, while high kriging estimated groundwater NO x concentrations were observed in the residential areas with a high density of septic tank distribution. Our study further revealed that more areas were found with high estimated NO x concentrations in summer than in spring. This occurred partially because of more NO x leaching into the shallow groundwater due to the wetter summer and partially because of faster nitrification rate due to the higher temperature in summer. Large extent and high kriging estimated total phosphorus concentrations were found in the residential areas. Overall, the groundwater Na and Mg concentration distributions were relatively more even in summer than in spring. Higher kriging estimated groundwater As concentrations were found around the agricultural areas, which exceeded the EPA’s drinking water standard limit. Very small variations in groundwater dissolved organic carbon concentrations were observed between spring and summer. This study demonstrated that the concentrations of groundwater quality constituents varied from location to location, and impacts of land uses on groundwater quality variation were profound.  相似文献   

6.

Introduction

Transition from first- to second-generation photocatalysts has followed the notion that greater absorption of light in the visible region would yield greater spectral sensitivity and greater photoactivity. Though a promising strategy, in practice, it did not meet expectation because of various side issues, which in many cases has led to loss of photoactivity and chemical reactivity. This article examines some earlier notions that arose from applications of different metal oxides (e.g., TiO2, ZnO, MgO among others) that made these oxides good photocatalysts in many processes.

Discussion

Phenomena that proved relevant in developing next generation photoactive materials are considered: the dependence of the activity of photocatalysts on the band gap energy, the spectral variations of the activity of photoactive materials, and the spectral variations of selectivity of photoactive materials. The tendency to decrease the energy of actinic photons through doping in forming second-generation photocatalysts is completely opposite the fundamental observation in first-generation photocatalysts whereby the activity increased with increasing band gap energy. Extension of spectral sensitivity of second-generation photoactive materials also caused a decrease of their photoactivity; hence, some notions are reconsidered to produce next(third) generation photoactive materials.

Summary

The article proposes the following concepts to develop next generation photocatalysts: (1) multi(two)-photon excitation of photoactive materials with lower energy photons to achieve the same excited state as with higher energy photons, (2) utilization of heterojunctions to drive electronic processes in the desired direction, and (3) selective photoexcitation of localized electronic states to gain better selectivity.  相似文献   

7.
Two new photoactive materials compatible with environmentally friendly solvents (water and methanol) have been synthesized and characterized. They are comprised of a porous matrix of polystyrene and divinylbenzene with bound Rose Bengal and additional pendant groups added to increase the hydrophilicity (ethylenediamine and γ-gluconolactone). The new polymers are efficient photocatalysts capable of generating singlet oxygen after irradiation with visible light. Photochemical oxygenations of 9,10-anthracenedipropionic acid and 2-furoic acid have been carried out. The measured conversions indicate that the new supported photosensitizers are more effective than the parent hydrophobic polymer. Figure
New photoactive polymers for oxidations in aqueous solvent  相似文献   

8.
Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals and are believed to favor ozone formation significantly. Traffic emission data for both compounds are scarce and mostly outdated. A better knowledge of today's HCHO and HONO emissions related to traffic is needed to refine air quality models. Here the authors report results from continuous ambient air measurements taken at a highway junction in Houston, Texas, from July 15 to October 15, 2009. The observational data were compared with emission estimates from currently available mobile emission models (MOBILE6; MOVES [MOtor Vehicle Emission Simulator]). Observations indicated a molar carbon monoxide (CO) versus nitrogen oxides (NOx) ratio of 6.01 ± 0.15 (r 2 = 0.91), which is in agreement with other field studies. Both MOBILE6 and MOVES overestimate this emission ratio by 92% and 24%, respectively. For HCHO/CO, an overall slope of 3.14 ± 0.14 g HCHO/kg CO was observed. Whereas MOBILE6 largely underestimates this ratio by 77%, MOVES calculates somewhat higher HCHO/CO ratios (1.87) than MOBILE6, but is still significantly lower than the observed ratio. MOVES shows high HCHO/CO ratios during the early morning hours due to heavy-duty diesel off-network emissions. The differences of the modeled CO/NOx and HCHO/CO ratios are largely due to higher NOx and HCHO emissions in MOVES (30% and 57%, respectively, increased from MOBILE6 for 2009), as CO emissions were about the same in both models. The observed HONO/NOx emission ratio is around 0.017 ± 0.0009 kg HONO/kg NOx which is twice as high as in MOVES. The observed NO2/NOx emission ratio is around 0.16 ± 0.01 kg NO2/kg NOx, which is a bit more than 50% higher than in MOVES. MOVES overestimates the CO/CO2 emission ratio by a factor of 3 compared with the observations, which is 0.0033 ± 0.0002 kg CO/kg CO2. This as well as CO/NOx overestimation is coming from light-duty gasoline vehicles.
Implications: Nitrous acid (HONO) and formaldehyde (HCHO) are important precursors for radicals that ultimately contribute to ozone formation. There still exist uncertainties in emission sources of HONO and HCHO and thus regional air quality modeling still tend to underestimate concentrations of free radicals in the atmosphere. This paper demonstrates that the latest U.S. Environmental Protection Agency (EPA) traffic emission model MOVES still shows significant deviations from observed emission ratios, in particular underestimation of HCHO/CO and HONO/NOx ratios. Improving the performance of MOVES may improve regional air quality modeling.  相似文献   

9.

Purpose

Bacterial community structure and the chemical components in aerosols caused by rotating brushes in an Orbal oxidation ditch were assessed in a Beijing municipal wastewater treatment plant.

Methods

Air samples were collected at different distances from the aerosol-generating rotating brushes. Molecular culture-independent methods were used to characterize the community structure of the airborne bacteria in each sample regardless of cell culturability. A clone library of 16S rDNA directly amplified from air DNA of each sample was constructed and sequenced to analyze the community composition and diversity. Insoluble particles and water-soluble ions emitted with microorganisms in aerosols were analysis by a scanning electron microscope together with energy dispersive X-ray spectroscopy and ion chromatogram analyzer.

Results

In total, most of the identified bacteria were Proteobacteria. The majority of sequences near the rotating brushes (the main source of the bioaerosols) were Proteobacteria (62.97 %) with ??-(18.52 %) and ??-(44.45?%) subgroups and Bacteroidetes (29.63 %). Complex patterns were observed for each sampling location, suggesting a highly diverse community structure, comparable to that found in water in the Orbal oxidation ditch. Accompany with microorganisms, 46.36???g/m3 of SO 4 2? , 29.35???g/m3 of Cl?, 21.51???g/m3 of NO 3 ? , 19.76???g/m3 of NH 4 + , 11.42???g/m3 of PO 4 3? , 6.18???g/m3 of NO 2 ? , and elements of Mg, Cl, K, Na, Fe, S, and P were detected from the air near the aerosols source.

Conclusions

Differences in the structure of the bacterial communities and chemical components in the aerosols observed between sampling sites indicated important site-related variability. The composition of microorganisms in water was one of the most important sources of bacterial communities in bioaerosols. Chemical components in bioaerosols may provide a media for airborne microorganism attachment, as well as a suitable microenvironment for their growth and survival in the air. This study will be benefit for the formulation of pollution standards, especially for aerosols, that take into account plant workers?? health.  相似文献   

10.
In a companion paper by Hu et al. [2007. A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmospheric Environment, doi:10.1016/j.atmosenv.2007.04.025], a kinetic mechanism was developed from data generated in the University of North Carolina's (UNC) 270 m3 dual outdoor aerosol smog chamber, to predict secondary organic aerosol (SOA) formation from toluene oxidation in the atmosphere. In this paper, experimental data sets from European Photoreactor (EUPHORE), smog chambers at the California Institute of Technology (Caltech), and the UNC 300 m3 dual-outdoor gas phase chamber were used to evaluate the toluene mechanism. The model simulates SOA formation for the ‘low-NOx’ and ‘mid-NOx’ experiments from EUPHORE chambers reasonably well, but over-predicts SOA mass concentrations for the ‘high-NOx’ run. The model well simulates the SOA mass concentrations observed from the Caltech chambers. Experiments with the three key toluene products, 1,4-butenedial, 4-oxo-2-pentenal and o-cresol in the presence of oxides of nitrogen (NOx) are also simulated by the developed mechanism. The model well predicts the NOx time–concentration profiles and the decay of these two carbonyls, but underestimates ozone (O3) formation for 4-oxo-2-pentenal. It well simulates SOA formation from 1,4-butenedial but overestimates (possibly due to experimental problems) the measured aerosol mass concentrations from 4-oxo-2-pentenal. The model underestimates SOA production from o-cresol, mostly due to its under-prediction of o-cresol decay. The effects of varying temperature, relative humidity, glyoxal uptake, organic nitrate yields, and background seed aerosol concentrations, were also investigated.  相似文献   

11.
In order to develop a diffusion denuder for the removal of NO2 from ambient atmospheric samples, a number of materials were screened for their ability to adsorb NO2:
  • 1.(1) MgO;
  • 2.(2) MnO2 on alpha-Al2O3;
  • 3.(3) water-treated MnO2 on alpha-Al2O3; and
  • 4.(4) MnO2 (activated).
A simple cylindrical denuder coated with MnO2 (activated) was very effective in the removal of NO2 from a feedgas of NO2 in air at ambient temperature and pressure. The other materials were unsatisfactory. The strong oxidizing properties, along with the hydrated surface of the MnO2 (activated), appear to be important for the sorption of NO2, as suggested in applications elsewhere. Quantification of denuder sorption efficiencies indicates that MnO2 (activated) is nearly a perfect sorbent for NO2. The diffusion coefficient of NO2 in air was found to be 10.8 ± 0.3 cm2 min−1 at 22–23°C, which compares favourably with a theoretical estimate. Although MnO2 (activated)-coated denuders were also found to adsorb SO2, interference with NO2 sorption was not sufficient to impair ambient applications.  相似文献   

12.

Introduction

TiO2 anatase nanoplates and hollow microspheres were fabricated by a solvothermal?Chydrothermal method using titanium isopropoxide as a titanium precursor and hydrofluoric acid as a capping agent in order to enhance the formation of the {001} crystal facets of the anatase nanocrystals.

Methods

These different morphological structures of TiO2 anatase can be achieved by only changing the solvent, keeping the amount of the precursor and of the capping agent identical during the solvothermal?Chydrothermal process.

Results and discussion

After calcination of the samples, the adsorbed fluoride atoms on the {001} crystal facets of the TiO2 anatase nanocrystals were completely removed from their surface according to XPS analysis. The calcined TiO2 anatase structures were higher crystallized and the specific surface area of the catalysts increased, enhancing their photocatalytic activity in comparison to the non-calcined TiO2 anatase structures. All TiO2 anatase samples with adsorbed as well as non-adsorbed fluoride atoms on their {001} crystal facets, exhibited a higher photonic efficiency than Degussa P25, which was used as a reference.

Conclusion

The fluoride free TiO2 anatase nanoplates exhibited the best photocatalytic activity in oxidizing the NO gas to NO2 and NO3 ?.  相似文献   

13.

Background

Continuous monitoring of air quality is implemented by government institutions at fixed ambient sites. However, the correlation between fixed site measurements and exposure of individual persons to air contaminants is likely to be weak.

Materials and methods

We measured particulate matter both outdoors and indoors by following the spatial movement of individuals. Sixteen test persons took part and carried a measurement backpack for a 24-h period. The backpack was comprised of a Grimm Aerosol Spectrometer model 1.109, a GPS device, and a video camera for tracking of human behavior. The spectrometer provided information about particle numbers and mass in 32-size classes with a high temporal resolution of 6 s.

Results

The personal exposure of individuals during 24 h could significantly exceed the outdoor particulate matter (PM)10 concentrations measured at the fixed sites. The average 24-h exposure of all test persons for PM10 varied from 27 to 322 ??g m?3. Environmental tobacco smoke and cooking emissions were among the main indoor sources for PM. The amount of particulate matter a test person was exposed to was highly dependent on the spatial behavior and the surrounding microenvironment conditions.

Discussion

Large-scale experiments including personal measurements might help to improve modeling approaches to approximate the actual exposure on a statistically sound basis.  相似文献   

14.

Objective

This work aims to investigate the correlation between the photocatalytic activity determined by methylene blue bleaching (DIN 52980), stearic acid degradation, and degradation of acetone in gas phase.

Method

The photocatalytic TiO2 coatings included in this investigation ranged from thin commercially available coatings (ActivTM and BioCleanTM) and ready to use suspensions (Nano-X PK1245) to lab-produced PVD and sol?Cgel coatings. XRD analysis of the photocatalytic coatings showed that all the coatings consisted of nanocrystalline anatase, although the thickness and porosity varied considerably.

Results

The study showed that the reproducibility of the activity measurements was good. However, more importantly, the investigation showed that there is a good correlation between the activities determined by the different methods even though the characteristics of the photocatalytic coatings and the organic probe molecules varied considerably.

Conclusion

The overall findings of this work suggest that there is a good correlation between the investigated methods. These results are promising for the future work concerning standardization of methods for determination of the activity of photocatalytic films.  相似文献   

15.

Introduction

Trends in precipitation pH and conductivity during 1992?C2009, and in ionic compositions from January 2007 to June 2009, are reported from Lushan Mountain, one of the highest mountains in mid-east China. Annual mean pH was in the range of 4.35?C5.01 and showed a statistically very significant (P?P?Results and discussions Over the period of study, Lushan Mountain received more rainfall in spring and summer. The pH values varied seasonally with winter minima. The winter multiyear seasonal mean pH was 4.35. The corresponding summer value was 4.88. SO 4 2? and NO 3 ? were the main anions, and NH 4 + and Ca2+ the main cations. The anion to cation ratio was 0.8?C1.0, and that of [SO 4 2? ] to [NO 3 ? ] was 2.4-3.0, much lower than that of the 1980s. However, sulfuric acid was still the main acid present. The ratio of [NH 4 + ] to [Ca2+] was about 1.0, suggesting that these two alkaline substances provided close acid neutralizing capacity. The ratio of [Cl?] to [Na+] was about 0.67, somewhat lower than that of natural precipitation.

Conclusions

Ionic composition varied seasonally and was closely correlated to the amounts of rainfall and pollution. Trajectory analyses showed that the trajectories to Lushan Mountain could be classified in six clusters and trajectories originating from the South Sea and the areas surrounding Lushan Mountain had the greatest impacts on precipitation chemistry.  相似文献   

16.

Purpose

Screening out cadmium (Cd) excluding cultivars of a crop in agricultural production is an effective way to prohibit Cd entering into food chain.

Methods

A judging criterion for Cd-excluding cultivars based on food safety was suggested and used in the identification of Cd-excluding welsh onion (Allium fistulosum L.) cultivars. A pot culture experiment was carried out to screen out Cd-excluding cultivars, of which the results were confirmed by plot experiments. The relevant factors of Cd accumulation in the pseudostem were analyzed and used in the correlation analysis aiming to study the low Cd accumulation mechanisms.

Results

The concentration of Cd in the pseudostem of welsh onions was 0.08?C0.20, 0.18?C0.41, and 0.26?C0.61?mg/kg fresh weight (FW) under three treatments (1.0, 2.5, and 5.0?mg/kg), respectively. The significant (p? 3 ? ?CN, and eight other elements in the tested welsh onion cultivars. Two cultivars were identified as Cd-excluding cultivars, mainly because the accumulation of Cd in their pseudostem was only 0.041?±?0.003 and 0.046?±?0.002?mg/kg FW, and 0.054?±?0.001 and 0.066?±?0.011?mg/kg FW, when growing in plots with Cd concentration of 0.49 and 0.99?mg/kg, respectively.

Conclusions

Ribentiegancongwang and Wuyeqi could be identified as Cd-excluding cultivars. Low bioaccumulation factor of the roots was the main mechanism of Cd-excluding welsh onion cultivars.  相似文献   

17.

Introduction

Schwertmannite was synthesized through an oxidation of FeSO4 by Acidithiobacillus ferrooxidans LX5 cell suspension at an initial pH?2.5 and 28°C for 3?days and characterized using X-ray diffraction spectroscopy and scanning electron microscope. The schwertmannite photocatalytic degradation of methyl orange (MO) by oxalate was investigated at different initial pH values, concentrations of schwertmannite, oxalate, and MO.

Results

The results demonstrated that photodegradation of MO in the presence of schwertmannite or oxalate alone was very weak. However, the removal of MO was significantly enhanced when schwertmannite and oxalate coexisted in the reaction system. Low pH (4 or less) was beneficial to the degradation of MO. The optimal doses of schwertmannite and oxalate were 0.2?g?L?1 and 2?mM, respectively. Hydroxyl radicals (·OH) and Fe(II), the intermediate products, were also examined during the reaction to explore their correlation with the degradation of MO.

Conclusion

A possible mechanism for the photocatalytic decomposition of MO in the study was proposed. The formation of Fe(III)-oxalate complexes on the surface of schwertmannite was a precursor of H2O2 and Fe(II) production, further leading to the yield of ·OH responsible for the decomposition of MO.  相似文献   

18.
To explain the detailed process involved in phosphorus removal by periphyton, the periphyton dominated by photoautotrophic microorganisms was employed in this study to remove inorganic phosphorus (P i ) from wastewater, and the removal kinetics and isotherms were then evaluated for the P i removal process. Results showed that the periphyton was capable of effectively removing P i that could completely remove the P i in 24 h at an initial P i concentration of 13 mg P L?1. Furthermore, the P i removal process by the periphyton was dominated by adsorption at initial stage (~24 h), which involved physical mechanistic process. However, this P i adsorption process was significantly influenced by environmental conditions. This work provides an insight into the understanding of phosphorus adsorption by periphyton or similar microbial aggregates.
Graphical Abstract
?  相似文献   

19.

Purpose

The aim of this study was to prepare a highly active immobilized titania/silica photocatalyst and to test its performance in situ toward degradation of toluene as one of the major toxic indoor contaminants.

Methods

In this work, two different titania layers immobilized on Al sheets were synthesized via low temperature sol?Cgel method employing presynthesized highly active titania powders (Degussa P25 and Millennium PC500, mass ratio 1:1): (a) with a silica/titania binder and a protective layer and (b) without the binder. The photocatalysts were characterized by X-ray diffraction, nitrogen sorption measurements, scanning electron microscopy (SEM), infrared spectroscopy, and UV?Cvis diffuse reflectance spectroscopy (DRS). The in situ photocatalytic degradation of gaseous toluene was selected as a probe reaction to test photocatalytic activity and to verify the potential application of these materials for air remediation.

Results

Results show that nontransparent highly photocatalytically active coatings based on the silica/titania binder and homogeneously dispersed TiO2 powders were obtained on the Al sheets. The crystalline structure of titania was not altered upon addition of the binder, which also prevented inhomogeneous agglomeration of particles on the photocatalyst surface. The photoactivity results indicate that the adsorption properties and photocatalytic activity of immobilized photocatalysts with the silica/titania binder and an underlying protective layer were very effective and additionally, they exhibited considerably improved adhesion and uniformity.

Conclusion

We present a new highly photocatalytically active immobilized catalyst on a convenient metallic support, which has a potential application in an air cleaning device.  相似文献   

20.
In the present study, an attempt has been made to grow microalgae Scenedesmus quadricauda, Chlorella vulgaris and Botryococcus braunii in mixotropic cultivation mode using two different substrates, i.e. sewage and glucose as organic carbon sources along with flue gas inputs as inorganic carbon source. The experiments were carried out in 500 ml flasks with sewage and glucose-enriched media along with flue gas inputs. The composition of the flue gas was 7 % CO2, 210 ppm of NO x and 120 ppm of SO x . The results showed that S. quadricauda grown in glucose-enriched medium yielded higher biomass, lipid and fatty acid methyl esters (FAME) (biodiesel) yields of 2.6, 0.63 and 0.3 g/L, respectively. Whereas with sewage, the biomass, lipid and FAME yields of S. quadricauda were 1.9, 0.46, and 0.21 g/L, respectively. The other two species showed closer results as well. The glucose utilization was measured in terms of Chemical Oxygen Demand (COD) reduction, which was up to 93.75 % by S. quadricauda in the glucose-flue gas medium. In the sewage-flue gas medium, the COD removal was achieved up to 92 % by S. quadricauda. The other nutrients and pollutants from the sewage were removed up to 75 % on an average by the same. Concerning the flue gas treatment studies, S. quadricauda could remove CO2 up to 85 % from the flue gas when grown in glucose medium and 81 % when grown in sewage. The SO x and NO x concentrations were reduced up to 50 and 62 %, respectively, by S. quadricauda in glucose-flue gas medium. Whereas, in the sewage-flue gas medium, the SO x and NO x concentrations were reduced up to 45 and 50 %, respectively, by the same. The other two species were equally efficient however with little less significant yields and removal percentages. This study laid emphasis on comparing the feasibility in utilization of readily available carbon sources like glucose and inexpensive leftover carbon sources like sewage by microalgae to generate energy coupled with economical remediation of waste. Therefore on an industrial scale, the sewage is more preferable. Because the results obtained in the laboratory demonstrated both sewage and glucose-enriched nutrient medium are equally efficient for algae cultivation with just a slight difference. Essentially, the sewage is cost effective and easily available in large quantities compared to glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号