首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ichthyophonus hoferi Plehn and Mulsow, 1911 is thought to be one of the few pathogenic fungal infections of marine fish. The result of an attack is severe epizootics in herring stocks with drastic reduction in the population as a consequence. The exact phylogenetic position of the genusIchthyophonus is not known. In the present study, a combination of molecular data, ultrastructure and biochemical characters were utilized to investigate the phylogeny ofI.hoferi. The genomic DNA encoding the small subunit ribosomal RNA (18S rRNA) was amplified and sequenced. Comparisons with other eukaryotic 18S rRNA sequences indicate thatI. hoferi is not a member of the Fungi. In both the parsimony and the neighborjoining trees,I. hoferi is the sister taxon to the rosette agent. The clade encompassingI.hoferi and the rosette organism is the sister group to the chanoflagellate clade in the neighbor-joining tree, while in the parsimony tree theI. hoferi/rosette clade is equally distant to both the choanoflagellate and animal clades. Transmission electron microscopy showed thatI. hoferi has a defined cell wall, an endoplasm that consists of a fine granulated matrix with numerous ribosomes, several nuclei, vacuoles of varying density distributed throughout the cell, and mitochondria with tubular cristae. The cell wall ofI. hoferi contains chitin.  相似文献   

2.
The impact of 2,4-D ethyl ester and pencycuron in inducing DNA damage in three species of cyanobacteria-Anabaena fertilissima, Aulosira fertilissima, and Westiellopsis prolifica as evidenced by PCR-based assays: RAPD and 16S rRNA amplification was examined. Exposure of genomic DNA (in vitro) to pencycuron for 4 days did not produce severe damage in DNA fragments of all three cyanobacterial species whereas exposure to 2,4-D ethyl ester markedly inhibited the template activity of genomic DNA compared to untreated cultures of A. fertilissima. In A. fertilissima a single band of approximately 1000?bp was observed even after 16 days of exposure to 60?ppm pencycuron which suggests that certain segments of DNA are resistant to pencycuron DNA damaging effects. However, a significant effect was observed in the case of W. prolifica for 2,4-D ethyl ester and pencycuron where complete disappearance of fragments was not recorded even after 16 days of incubation and interestingly some new DNA bands were induced. Similar to the effects with RAPD profile, amplification of rRNA was significantly inhibited following exposure of genomic DNA to 2,4-D ethyl ester and pencycuron. Our findings clearly demonstrate that pesticide concentrations affected cyanobacterial DNA and lethality of these microbes might be due to irreversible DNA damage. Thus, it is postulated that PCR assays may be conveniently used for screening DNA damage produced by 2,4-D ethyl ester and pencycuron in all three cyanobacteria examined in this study.  相似文献   

3.
In a previous study that investigated genetic structure of Octopus vulgaris along the South African coast by sequencing the mitochondrial cytochrome oxidase III gene (COIII), all sequences generated were identical. Such a finding is unusual, because mitochondrial DNA mutates quickly, and several marine invertebrates present in southern Africa show considerable genetic variation and structure. We reanalysed the samples using two different mitochondrial markers, namely cytochrome oxidase I (COI) and the large ribosomal subunit (16S rRNA). Sequences of both these markers showed variation. The conclusion of the previous study, that South Africa’s O. vulgaris population is characterised by a lack of genetic structure along the coast, is rejected. Some specimens from Durban (southeast Africa) were genetically more different from those found in the remainder of the country than were specimens from other regions (Tristan da Cunha and Senegal). We suggest that the lineage in Durban may have been recently introduced.  相似文献   

4.
Juvenile salmon exhibit high growth rates upon their arrival into the marine environment. Dietary changes from freshwater and estuarine habitats to those derived from the marine environment may play an important role in ultimate adult survival. We measured the total lipid and fatty acid (FA) composition of juvenile Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and 18 of their potential prey items sampled from coastal waters during their first few months at sea. Coho salmon had significant reductions in their lipid content (% wet weight) between May and June, likely due to early marine growth. We did not find a significant drop between May and June Chinook salmon lipid content, which may indicate an earlier ontogenetic selection to marine prey that are higher in lipids and essential fatty acids (EFAs). Juvenile salmon ate prey of both high and low lipids. Significant FA compositional changes occurred for both coho and Chinook salmon between May and June. In May, the FA profile of juvenile salmon, especially coho salmon, did not resemble their prey items; however, in June, there was a strong correlation between salmon and their common fish prey as determined by gut content analysis. Significant increases in the level of EFAs, especially docosahexaenoic acid (DHA, 22:6n-3) accounted for the majority of the monthly differences in salmon tissue FA composition. In order for juvenile salmon to adequately meet their physiological requirements, they may have adapted to select advantageous prey with higher levels of EFAs, especially DHA, in order to rapidly increase their growth and ultimate survival.  相似文献   

5.
6.
The physical uniformity of the deep sea suggests a lack of absolute barriers to faunal dispersal, and thus genetic homogeneity in broadly distributed species is expected. The deep-sea amphipod Eurythenes gryllus Lichtenstein (Crustacea: Lysianassoidea) is considered a panoceanic, cold-water stenotherm, with a vertical depth distribution from 184 to 6500 m. We surveyed mtDNA sequence diversity in E. gryllus to assess genetic diversity and population structure in different oceans and across traditionally defined bathyal and abyssal zones. DNA sequences (437 nucleotides length) from the mitochondrial large-subunit ribosomal RNA gene (16S rRNA) of 95 individuals, collected between 1982 and 1990 from 14 locations in the central North Pacific (including multiple samples on the slope of a seamount), castern and western North Atlantic, and the Arctic Ocean, were obtained. Our analysis of DNA sequence diversity indicates (1) genetic homogeneity among sites within the same depth zone at the scale of ocean basins; and (2) genetically divergent, cryptic taxa distributed at different depths, with the greatest diversity in the bathyal zone. These observations suggest that ecological and physical conditions are important isolating mechanisms that may lead to speciation in this group.  相似文献   

7.
Quantification of feeding rates and selectivity of zooplankton is vital for understanding the mechanisms structuring marine ecosystems. However, methodological limitations have made many of these studies difficult. Recently, molecular based methods have demonstrated that DNA from prey species can be used to identify zooplankton gut contents, and further, quantitative gut content estimates by quantitative PCR (qPCR) assays targeted to the 18S rRNA gene have been used to estimate feeding rates in appendicularians and copepods. However, while standard single primer based qPCR assays were quantitative for the filter feeding appendicularian Oikopleura dioica, feeding rates were consistently underestimated in the copepod Calanus finmarchicus. In this study, we test the hypothesis that prey DNA is rapidly digested after ingestion by copepods and describe a qPCR-based assay, differential length amplification qPCR (dla-qPCR), to account for DNA digestion. The assay utilizes multiple primer sets that amplify different sized fragments of the prey 18S rRNA gene and, based on the differential amplification of these fragments, the degree of digestion is estimated and corrected for. Application of this approach to C. finmarchicus fed Rhodomonas marina significantly improved quantitative feeding estimates compared to standard qPCR. The development of dla-qPCR represents a significant advancement towards a quantitative method for assessing in situ copepod feeding rates without involving cultivation-based manipulation.  相似文献   

8.
The sibling species, Pseudocalanus moultoni (Frost, 1989) and P. newmani (Frost, 1989), occur sympatrically on Georges Bank. Taxonomic discrimination of the species relies on subtle morphological characteristics, making routine identification of the species very difficult. DNA sequence variation of two mitochondrial genes, 16S rRNA and cytochrome oxidase I (COI), reliably discriminated P. moultoni and P.␣newmani. Levels of DNA sequence variation for both genes were consistent with those between species of calanoid copepods. A molecular systematic protocol (based on allele-specific PCR amplification) was designed from the COI sequences and used to discriminate females of the two species. The distributions and relative abundances of the two species were mapped for April 1996 based on samples of 15 to 30 females from 12 collections across Georges Bank. The results of this study indicated that P. moultoni females predominated along the northern flank of Georges Bank, while P. newmani females were common on the southern flank, deeper than the 60-m isobath. Received: 16 May 1997 / Accepted: 26 April 1998  相似文献   

9.
Seafood mislabeling is common in both domestic and international markets. Studies on seafood fraud often report high rates of mislabeling (e.g., >70%), but these studies have been limited to a single sampling year, which means it is difficult to assess the impact of stricter governmental truth‐in‐labeling regulations. We used DNA barcoding to assess seafood labeling in 26 sushi restaurants in Los Angeles over 4 years. Seafood from 3 high‐end grocery stores were also sampled (n = 16) in 2014. We ordered 9 common sushi fish from menus, preserved tissue samples in 95% ethanol, extracted the genomic DNA, amplified and sequenced a portion of the mtDNA COI gene, and identified the resulting sequence to known fish sequences from the National Center for Biotechnology Information nucleotide database. We compared DNA results with the U.S. Food and Drug Administration (FDA) list of acceptable market names and retail names. We considered sushi‐sample labels that were inconsistent with FDA names mislabeled. Sushi restaurants had a consistently high percentage of mislabeling (47%; 151 of 323) from 2012 to 2015, yet mislabeling was not homogenous across species. Halibut, red snapper, yellowfin tuna, and yellowtail had consistently high (<77%) occurrences of mislabeling on menus, whereas mislabeling of salmon and mackerel were typically low (>15%). All sampled sushi restaurants had at least one case of mislabeling. Mislabeling of sushi‐grade fish from high‐end grocery stores was also identified in red snapper, yellowfin tuna, and yellowtail, but at a slightly lower frequency (42%) than sushi restaurants. Despite increased regulatory measures and media attention, we found seafood mislabeling continues to be prevalent.  相似文献   

10.
Benthic marine invertebrates with long-lived larvae are believed to have dispersal capabilities that contribute to maintaining genetic uniformity among populations over large geographical scales. However, both hydrological and biological factors may limit the actual dispersal of such larvae. We studied the population genetic structure of the edible common sea urchin Paracentrotus lividus (Lamarck, 1816), to explore its dispersal patterns in the Atlanto-Mediterranean region and, more specifically, to ascertain the role of the Strait of Gibraltar in shaping the genetic structure of this species. For this purpose, we analysed 158 individuals for the mitochondrial 16S rRNA gene and 151 of these for the nuclear single-copy intron adenine nucleotide transporter (ANT) from 16 localities from the Atlantic and Mediterranean basins, spanning over 4,000 km. Mitochondrial 16S rRNA shows higher genetic diversity in the Mediterranean than in the Atlantic and reveals a sharp break between the populations of both basins, probably as a consequence of the barrier imposed by the Almería–Orán hydrological front, situated east of the Strait of Gibraltar. Both markers suggest that a recent population expansion has taken place in both basins, most probably following the Messinian salinity crisis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Papakostas  S.  Triantafyllidis  A.  Kappas  I.  Abatzopoulos  T. J. 《Marine Biology》2005,147(5):1129-1139
Recent reports indicate an extensive amount of molecular evolution separating cryptic taxa as well as significant population structure at a microgeographical scale. Appropriate molecular markers are particularly suitable for distinguishing cryptic biological species. In this study, we examine the phylogenetic utility of 16S rRNA in elucidating the evolutionary relationships within the recently described euryhaline Brachionus plicatilis species complex. In addition, we assess the applicability of this marker in the genetic identification and monitoring of rotifer populations. We have sequenced a 378-bp fragment of the mitochondrial 16S rRNA gene in laboratory reference strains, hatchery clones as well as collections from a wild population of the subsaline Lake Koroneia (Northern Greece). Also, restriction fragment length polymorphism (RFLP) analysis was performed with eight restriction endonucleases. Rotifer samples are distinguished into six genetically divergent lineages. Average sequence divergence between lineages is 0.1038. The evolutionary relationships and divergence time-scales revealed with the 16S sequence data are in agreement with previous analyses using different mitochondrial and nuclear markers. The 16S region appears to have several advantages over other regions of the genome regarding use of species-specific primers, ease of amplification from single specimens and undiluted informational content over both recent and more ancient separations. It has also exhibited maximum discriminatory power (100% success) between lineages during RFLP analysis. The 16S assayed region has proven especially informative and consistent in detecting, supporting and establishing the lineage status within the B. plicatilis species complex both from a phylogenetic perspective and as an identification tool.  相似文献   

12.
 Mud crabs of the family Panopeidae are common organisms in coastal soft-bottom, vegetated, rubble, and oyster-bed communities along the temperate and tropical coastlines of the American continent. Similar morphology among many species renders their distinction and classification difficult. Here, we present phylogenies of western Atlantic Panopeidae based on DNA sequences of the mitochondrial large subunit rRNA (16S; 529 basepairs) and cytochrome oxidase I (COI; 640 basepairs) genes. Results suggest that the speciose genera Panopeus and Eurypanopeus are not monophyletic and that their taxonomy does not accurately reflect evolutionary partitions. In two cases (P. herbstii complex and E. depressus and allies), the molecular findings strongly support sister-species relationships that differ from previous morphology-based assumptions. We suggest that convergence or morphological stasis are responsible for the phenotypic similarities between divergent evolutionary lineages. Received: 23 July 1999 / Accepted: 5 April 2000  相似文献   

13.
Genome-size variation in bivalve molluscs determined by flow cytometry   总被引:5,自引:0,他引:5  
Six of the nine described species of the mole crab genus Emerita are distributed in the Americas, two [E. analoga (Stimpson, 1857) and E. rathbunae Schmitt, 1935] on the west coast, and four [E. benedicti Schmitt, 1935, E. brasiliensis Schmitt, 1935, E. portoricensis Schmitt, 1935 and E. talpoida (Say, 1817)] on the east. The presence of an extended planktonic larval stage in all Emerita species suggests high dispersal potential and the possibility of extensive gene flow among conspecific populations. Two taxa were sampled to study the extent of gene flow between widely separated conspecific populations: E. analoga (California and Chile) and E. talpoida (Massachusetts, South Carolina, and the west coast of Florida), while all other taxa were characterized from a single location. Portions of two mitochondrial genes, cytochrome oxidase I (COI) and 16S ribosomal RNA (16S rRNA) were sequenced. For data analysis, approximately 500 bp (COI) and 400 bp (16S rRNA) were examined. Estimated genetic divergence of 5.41% in COI between E. talpoida populations sampled from the Gulf of Mexico and the Atlantic coast, and 3.47% between E. analoga sampled in Chile and California, indicates that in both cases there has been no recent gene flow between disjunct populations. Additional molecular and morphological studies are necessary to decide whether disjunct populations should be accorded specific status. We predict that many marine invertebrates with antitropical distributions similar to E. analoga may consist of sibling species. In contrast to relationships inferred earlier from distribution patterns, parsimony analyses of both COI and 16S rRNA data yield similar phylogenetic trees in which E. analoga is separated from a clade composed of other species in the Americas; a bootstrap value (67%) in the COI inferred tree marginally supports the separation, but the same tree topology with a higher bootstrap value (84%) is obtained with 16S rRNA sequence data. Genetic divergence among the taxa indicates that the Emerita species constitute an old group and that distribution of species has been modified by past climatic and geological events.  相似文献   

14.
Organisms can control movements of nutrients and matter by physically modifying habitat. We examined how an ecosystem engineer, sockeye salmon (Oncorhynchus nerka), influences seasonal fluxes of sediments, nitrogen (N), and phosphorus (P) in streams of southwestern Alaska. The purpose of this study was to investigate whether salmon act as net importers or net exporters of matter and nutrients from streams and how these roles change as a function of salmon population density. We measured discharge and concentrations of suspended sediments and total N and P every 7-14 days for up to four summers in 10 streams spanning a gradient in salmon densities. We statistically allocated whole-season fluxes to salmon activities, such as excretion and bioturbation, and to export by hydrologic discharge. In addition, we used counts of spawning salmon to estimate nutrient and matter imports by salmon to streams. Large seasonal pulses of suspended sediments, P, and N were associated with salmon spawning activities, often increasing export an order of magnitude higher than during pre-salmon levels. Years and streams with more salmon had significantly higher levels of export of sediments and nutrients. In addition, years with higher precipitation had higher background export of P and N. Salmon exported an average of the equivalent of 189%, 60%, and 55% of total matter, P, and N that salmon imported in their bodies. The relative magnitude of export varied; salmon exported more than their bodies imported in 80%, 20%, and 16% across all streams and years for sediments, P, and N, respectively. A bioassay experiment indicated that the P exported by salmon is directly available for use by primary producers in the downstream lake. These results demonstrate that salmon not only move nutrients upstream on large spatial scales via their migration from the ocean and subsequent death, but also redistribute matter and nutrients on finer spatial scales through their spawning activities.  相似文献   

15.
Very few studies have investigated the effect of genetic diversity on the behavioral and phenotypic traits linked to the competitive ability of individuals. In this study, we reared juvenile Atlantic salmon (Salmo salar) alone or with the competitive rainbow trout (Oncorhynchus mykiss) in order to: (1) to assess correlations between heterozygosity and traits related to individual competitive ability [i.e., heterozygosity–fitness correlations (HFCs)] in Atlantic salmon, and (2) to evaluate the effect of the competitive rainbow trout on any such HFCs. We also tested whether a few loci had a disproportionately large effect (i.e., the local effect hypothesis) or, on the contrary, if all loci contributed equally (i.e., the global effect hypothesis) in explaining the observed HFCs. We found significant HFCs for phenotypic traits related to the competitive ability of juvenile Atlantic salmon, i.e., the growth rate and the distance to the feeding source. Some HFCs were nonlinear, suggesting that individuals with intermediate levels of heterozygosity were favored. In addition, we found that the competition exerted by rainbow trout only weakly modified these HFCs as the relationships were highly consistent across treatments. We demonstrated that the local-effect hypothesis best explained both linear and nonlinear HFCs. Overall, our results illustrated the importance of genetic diversity in explaining the behavioral variability observed within populations. Moreover, we provide evidence that, even if a competitive species can have strong ecological effects, the relationships between genetic diversity and fitness-related traits in juvenile Atlantic salmon were not influenced by such effects.  相似文献   

16.
污水处理厂空气介质抗生素抗性基因的分布   总被引:1,自引:0,他引:1  
考察了污水处理厂空气介质中典型的抗性基因(antibiotic resistance genes,ARGs)污染水平和浓度分布,并通过16S r RNA高通量技术对样品进行亲缘性及溯源研究。结果表明,在污水厂空气样品中8种抗生素抗性基因的检出率均超过50%,其中tet C、sul1、sul2和erm B检出率为100%。在曝气池和污泥脱水车间空气样品中8种抗性基因检出率均为100%。对其中的sul1、sul2、tet G和tet X共4种ARGs的定量分析结果表明,以上4种基因的相对浓度范围在102~105copies·ng~(-1)DNA之间,与邻近居民区空气样品抗性基因浓度处于同一水平;空气样品16S r RNA高通量测序聚类分析结果显示,居民区空气与污水厂园区内空气有较高的种群相似度,污水厂处理单元对其邻近区域的空气介质微生物组成影响较大。  相似文献   

17.
Diagnostic morphological characteristics of copepods of the genus Calanus are restricted largely to minor variations in secondary sex characteristics. This presents a persistent problem in the identification of individuals to species level, especially for immature stages. We have developed a simple molecular technique to distinguish between the North Atlantic Calanus species (C. helgolandicus, C. finmarchicus, C. glacialis and C. hyperboreus) at any life stage. Using the polymerase chain-reaction (PCR), the mitochodrial large subunit (16S) ribosomal RNA (rRNA) gene was amplified from individual copepods preserved in ethanol. Subsequent digestion of the amplified products with the restriction enzymes DdeI and VspI, followed by electrophoretic separation in 2% agarose (Metaphor, FMC Ltd), produced a characteristic pattern for each species. The versatility of the method is demonstrated by the unambiguous identification to species of any life stage, from egg to adult, and of individual body parts. Received: 11 May 1998 / Accepted: 5 August 1998  相似文献   

18.
Abstract: The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource‐management issue. We constructed an integrated assessment model as a tool for analyzing biological‐economic trade‐offs in recovery of Snake River spring‐ and summer‐run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon‐passage model to predict migration and survival of smolts; an age‐structured matrix model to predict long‐term population growth rates of salmon stocks; and a cost‐effectiveness analysis to determine a set of least‐cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon‐management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost‐effective and generally increased long‐term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost‐effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost‐effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80–90% of management alternatives from the cost‐effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can provide valuable tools for science‐based policy and management.  相似文献   

19.
Levels of total RNA, total DNA, 18S ribosomal RNA (rRNA), poly(A) messenger RNA (mRNA), and two mRNAs coding for abundant myofibrillar proteins were estimated in laboratory-reared Atlantic cod larvae (Gadusmorhua Linnaeus) under conditions of feeding and starvation. DNA probes specific for cod 18S rRNA, β-actin mRNA and myosin heavy chain mRNA were developed. In two experiments on newly hatched larvae in fed and starved treatments, changes in 18S rRNA and mRNA were similar to changes in total RNA during the first weeks after hatching. RNA levels in fed and starved larvae in both experiments were stable, or increased, over the first 3 d after hatching, and then decreased to minima at 9 d. RNA levels increased after 9 d, with the degree and timing of the increase varying among the individual classes of RNA. Complete mortality of starved larvae in both experiments was observed shortly after 11 d, corresponding to exhaustion of endogenous yolk reserves. Total RNA content, RNA/DNA ratio, 18S rRNA levels, total mRNA pool, and actin and myosin heavy chain mRNA levels showed significant differences in fed and starved first-feeding larvae after yolk exhaustion. In another experiment with 3- to 4-week-old cod larvae, 18S rRNA levels were significantly lower in starved versus fed larvae after 3 d. Total RNA responded to feeding and starvation within a similar time as 18S rRNA and the mRNAs examined. Analysis of bulk nucleic acids using fluorometric dyes was simpler and faster than analysis of individual RNAs using hybridization probes, and provides valuable information on recent growth and condition of individual larvae. However, analysis of specific RNAs can provide information on expression of the corresponding genes and reveal the changes underlying trends seen in bulk RNA. Received: 9 February 1996 / Accepted: 7 June 1999  相似文献   

20.
Phylogenetic relationships within the copepod family Euchaetidae and between representatives of three copepod orders (Calanoida, Harpacticoida, and Poecilostomatoida) were investigated using partial nucleotide sequences of the mitochondrial 16S rRNA and the nuclear 28S rRNA genes. DNA isolation, polymerase chain reaction, cloning, and DNA sequencing techniques were customized for these crustaceans. Our results support the monophyly of each copepod order, but in contrast to traditional morphology-based phylogenies of copepod orders, the Poecilostomatoida are basal to the Calanoida and Harpacticoida on our DNA-based phylogenetic tree. Phylogenetic trees generated by maximum parsimony, neighbor-joining, and maximum-likelihood analyses support the classification of the genera Euchaeta and Paraeuchaeta in the family Euchaetidae; results, however, suggest that Euchaetaacuta Giesbrecht is more closely related to species of the genus Paraeuchaeta than to those of Euchaeta, although limited taxon sampling may be partially responsible for this result. Phylogenetic mapping using the most parsimonious 16S tree suggests that the morphological synapomorphies distinguishing the genus Euchaeta evolved independently twice during the history of the Euchaetidae. Further, phylogenetic mapping suggests that the most recent common ancestor of the Euchaetidae and the Aetideidae was a deep-living, vertically migrating copepod, and that a bathypelagic, vertically migrating lifestyle characteristic of Paraeuchaeta is an ancestral trait of the family Euchaetidae which was lost apomorphically by Euchaeta. The application of a molecular clock suggests that the sibling species Euchaeta rimana Bradford and Euchaeta marina (Prestandrea) diverged due to the emergence of the Panamanian land bridge. Received: 9 October 1997 / Accepted: 5 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号