首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
CuCoO_x/TiO_2催化氧化NO性能研究   总被引:1,自引:0,他引:1  
采用浸渍法制备了CuCoOx/TiO2催化剂,考察了焙烧温度、反应温度、氧含量、NO浓度和空间速度对催化剂催化氧化NO性能的影响,并考察了催化剂的抗硫抗水性能.XRD、TPR和BET分析表明,350℃焙烧的催化剂具有Cu-Co2O4尖晶石结构,比表面积大,对N0的氧化效果好.在空速为5 000 h-1,NO进口浓度500 mg/m3,含氧量10%的条件下,反应温度300cc时N0转化率可达79.5%,250℃时N0转化率接近50%.该催化剂具有良好的单独抗SO2、抗H2O毒化性能,H2O和SO2同时存在时很快失活.该催化剂可用于不同时含H2O和SO2的含NO气体催化氧化后再吸收处理.  相似文献   

2.
过渡金属氧化物催化氧化NO实验研究   总被引:3,自引:1,他引:2  
采用沉淀法制备出一系列过渡金属氧化物催化剂,在内径为10 mm的固定床反应器中考察其对低浓度NO的催化氧化活性,催化反应活性顺序为:MnCrCoCuFeZn,并考察了以锰为活性组分采用低温固相法、流变相法和浸渍法制备的催化剂催化氧化NO的活性。实验结果表明,采用流变相法和低温固相法制备的锰氧化物催化剂,在反应温度150℃,NO浓度为5×10-4,O2为3%,N2为平衡气,空速51 000 h-1条件下,NO转化率分别为65%和57%;采用浸渍法制备的Mn/TiO2-10%催化剂,在反应温度200℃,空速相同的条件下,NO转化率为47%。  相似文献   

3.
采用共沉淀法合成Cu/Ni/Fe三元类水滑石衍生氧化物作为催化剂,从反应温度、空速、进口浓度、氧含量和相对湿度等方面考察了该催化剂对二硫化碳(CS_2)催化水解性能的影响以及不同反应条件对催化剂硫容的影响。实验结果表明:当反应温度为60~70℃、反应空速为2 000~4 000 h~(-1)、进口浓度为100~340 mg·m~(-3)、相对湿度为0.47%~0.67%时,该催化剂具有较高的脱硫效果和工作硫容;O_2含量的增加促进了水解产物H_2S氧化为硫酸盐,进而堵塞催化剂的碱性位,加快了催化剂中毒失活;H_2O和CS_2之间存在竞争吸附,一定含量的水蒸气有利于CS_2的水解反应,而过高含量的水会阻碍水解反应的进行,导致催化剂失活。  相似文献   

4.
采用溶胶凝胶法制备了Mn-Ce/Ti O2催化剂,并将其用于低温NH3选择催化还原NO的反应(NH3-SCR),考察了反应温度、空速、氧气浓度、氮氧化物浓度和氨氮比等反应条件对催化剂性能的影响。结果表明,NO入口浓度为800~1 600 mg/m3时,催化剂活性受NO初始浓度的影响较小。反应温度和氨氮比对NO转化率影响显著,100~150℃温度范围内,NO转化率随温度升高快速上升;当[NH3]/[NO]1.1时,随着[NH3]/[NO]的增加,NO转化率很快上升。反应体系中适当的O2浓度可促进NO还原为N2。空速大于10 000 h-1时,NO转化率随着空速的增大而降低。  相似文献   

5.
为了减小SCR系统在船舶上的占用空间,在YC6A220C型高速船舶柴油机实验平台上进行了紧凑型蜂窝状V_2O_5-WO_3/TiO_2催化剂在高空速下的脱硝实验研究,研究了不同氨氮比、空速、温度和NO浓度对脱硝性能的影响。实验结果表明:在氨氮比为1、空速35 000 h-1、温度250~360℃、NO浓度约205×10~(-6)~600×10~(-6)时,催化剂对柴油机尾气的脱硝效率都在80%以上,满足Tier-III对高速船舶柴油机的NOx排放标准;在氨氮比为1、空速35 000 h~(-1)、温度360℃时,催化剂对NO浓度达到1 300×10~(-6)和1 900×10~(-6)的脱硝效率都在80%以上,达到Tier-III对中、低速柴油机的NOx排放标准。  相似文献   

6.
氧化镁基催化剂及脱硝性能研究   总被引:2,自引:1,他引:1  
为控制燃烧烟气中NOx的污染,对共混合方法制备的氧化镁基催化剂进行烟气直接催化分解法脱硝实验研究,分析模拟烟气脱硝塔内温度及床层高度及氧气浓度、NO浓度和空速对脱硝效率的影响.研究表明:氧化镁基催化剂可以采用直接催化分解法对烟气脱硝,脱硝率85%~95%,氧化镁基催化吸附剂组成为氧化镁、固化剂、添加剂;脱硝的床层高度4~5 cm,脱硝反应温度130~170℃,烟气空速2 500~3 000 h-1;研究推测出氧化镁基催化剂存在活性缺陷,并对脱硝机理进行了初步分析.  相似文献   

7.
通过KOH改性整体式无烟煤活性炭,制备了NO吸附净化材料。利用SEM、EDS和N2吸附-脱附对活性炭表面形貌特性、元素组成、比表面积及孔径分布等进行表征,并分别考察了KOH溶液浓度、干燥温度、反应空速、反应温度等因素对活性炭净化NO性能的影响。结果表明,活性炭的微孔结构对NO的吸附起主要作用,NO的净化效率随空速的增加而降低,随反应温度升高先升高后降低。经20%KOH溶液改性,30℃干燥的活性炭材料具有较丰富的微孔结构和孔容,在30℃和空速15 000 h-1的反应条件下,材料对NO的净化效率可达到73%左右。  相似文献   

8.
催化氧化还原吸收法脱除工业含湿废气中NOx   总被引:4,自引:1,他引:3  
基于精细化工、制药行业排出 NOx 废气氧化度低、氧气含量高的特点,提出以改性活性炭(MAC)为催化剂的催化氧化-还原吸收脱除 NOx 的方法.考察了相对湿度、氧化温度、氧化时间对 NO 催化氧化以及还原液种类对 NOx 吸收的影响.结果表明,随着相对湿度的增加 NO 转化率急剧下降,但随着氧化时间的延长有所提高;干气条件下,随着温度升高,NO 转化率下降;湿气条件下,NO 氧化反应最佳反应温度范围为 50~70℃,实验条件下的 NO 最高转化率可达 51%;还原液种类中以尿素-碱液对 NOx 和 NO 的吸收效果最好,亚硫酸铵-碱液对 NOx 的吸收效果最好.通过催化氧化-还原吸收的多级组合可实现 NOx 的有效脱除与达标排放.  相似文献   

9.
采用浸渍法制备了CuCoOx/TiO2催化剂,考察了焙烧温度、反应温度、氧含量、NO浓度和空间速度对催化剂催化氧化NO性能的影响,并考察了催化剂的抗硫抗水性能。XRD、TPR和BET分析表明,350℃焙烧的催化剂具有CuCo2O4尖晶石结构,比表面积大,对NO的氧化效果好。在空速为5000h^-1,NO进口浓度500mg/m^3,含氧量10%的条件下,反应温度300℃时NO转化率可达79.5%,250℃时NO转化率接近50%。该催化剂具有良好的单独抗SO2、抗H2O毒化性能,H2O和SO2同时存在时很快失活。该催化剂可用于不同时含H2O和SO2的含NO气体催化氧化后再吸收处理。  相似文献   

10.
考察了经10% H2-90% Ar(体积分数)还原的钒硅催化剂在固定床石英玻璃反应器中的脱硫脱硝活性,研究了反应温度、SO2/NO摩尔比及O2浓度对SO2和NO脱除率的影响.结果表明,还原后的钒硅催化剂的平均NO脱除率提高了15%左右;反应温度对脱硫脱硝影响较大,当温度为400℃以上时SO2和NO脱除率基本保持稳定;SO2/NO摩尔比为2和5时,钒硅催化剂的NO脱除率较高;模拟烟气中有O2条件下的脱硫脱硝活性明显高于无O2条件,O2体积分数为6.00%时SO2和NO脱除率达到最大.  相似文献   

11.
采用浸渍法制备了CuCoOx/TiO2催化剂,考察了焙烧温度、反应温度、氧含量、NO浓度和空间速度对催化剂催化氧化NO性能的影响,并考察了催化剂的抗硫抗水性能。XRD、TPR和BET分析表明,350℃焙烧的催化剂具有CuCo2O4尖晶石结构,比表面积大,对NO的氧化效果好。在空速为5 000 h-1,NO进口浓度500 mg/m3,含氧量10%的条件下,反应温度300℃时NO转化率可达79.5%,250℃时NO转化率接近50%。该催化剂具有良好的单独抗SO2、抗H2O毒化性能,H2O和SO2同时存在时很快失活。该催化剂可用于不同时含H2O和SO2的含NO气体催化氧化后再吸收处理。  相似文献   

12.
以SnO2为载体,Au为活性组分,采用真空浸渍法、共沉淀法、沉积-沉淀法制备CO氧化的催化剂,同时还制备双金属体系催化剂Au-Pd/SnO2和Au-Pt/SnO2.用气相色谱对所制备的催化剂进行活性评价,运用DSC、SEM、XRD、BET等对催化剂进行表征.在本实验条件下,载体二氧化锡焙烧温度为500℃,催化剂成型温度为350℃,金负载量为3%(wt.)时,用沉积.沉淀法制备的Au/SnO2活性最好,在18℃,空速为24 000 h-1条件下就能将CO(浓度为4%)完全氧化为CO2;添加铂和钯可提高Au/SnO2对CO的催化活性.  相似文献   

13.
锰铜铈氧化物催化剂氧化NO性能及动力学研究   总被引:1,自引:0,他引:1  
实验以TiO2为载体采用浸渍法制备CuOx/TiO2、CeOx/TiO2、CuCeOx/TiO2和MnCuCeOx/TiO2催化剂,考察这些催化剂氧化NO活性,探究Cu、Ce摩尔比和添加Mn元素对CuCeOx/TiO2催化剂氧化NO活性的影响,使用扫描电镜观察催化剂表面结构。研究发现,Cu、Ce元素配合后的CuCeOx/TiO2催化剂氧化活性明显好于单独含Cu、Ce的催化剂,当Cu、Ce摩尔比为Cu:Ce=1∶2时,CuCeOx/TiO2催化剂氧化活性最好,在NO浓度500×10-6,O210%,空速为24 000 h-1,350℃时,NO氧化度为0.62;添加Mn元素可以提高CuCeOx/TiO2催化剂低温氧化活性,250℃时,MnCuCe/Ti-3和MnCuCe/Ti-5催化剂氧化度为0.53和0.69,300℃时,MnCuCe/Ti-3和MnCuCe/Ti-5催化剂氧化度均为0.76;此外,实验还研究了NO在MnCuCe/Ti-3催化剂上反应的动力学方程。  相似文献   

14.
将负载1.0%(质量分数)Pt的自组装型铂基催化剂Pt/γ-Al_2O_3装填在固定床反应器中,研究了环己酮质量浓度(500~4 000mg/m~3)、相对湿度(5%~75%)、温度(160~260℃)以及空速(5 000~20 000h~(-1))与环己酮降解率的关系,并依据不同的氧气分压和环己酮分压建立反应动力学模型。结果表明,氧气分压对反应速率影响极小,可以忽略,而环己酮分压影响显著。研究结果对低温催化降解环己酮的工程设计与运行具有指导意义。  相似文献   

15.
制备并考察了Cu-Mn/SiO2催化氧化NO的性能,研究了各操作条件对NO催化氧化效率的影响,在NO体积分数1 000×10-6、O210%,空速5 000 h-1,240℃时,NO的氧化率高于60%(此时最适宜吸收处理),300℃时,氧化率可达到70%,接近平衡值.Cu-Mn/SiO2有良好的单独抗H2O、SO:毒化性能,H2O和SO2同时存在时,很快失活.Cu-Mn/SiO2可用于不同时含H2O和SO2的含NO气体氧化吸收处理.  相似文献   

16.
利用等体积浸渍法制备γ-Al_2O_3负载Mn基催化剂,考察了掺杂元素种类,掺杂元素与Mn元素摩尔比以及煅烧温度对NO低温(100℃)催化氧化活性的影响,并对催化剂在有SO_2或H_2O的烟气中的稳定性进行了探究。结果表明,掺杂元素为Ce,Ce/Mn=0.4,煅烧温度为500℃条件下制备的催化剂NO催化活性最佳,在NO体积浓度为500×10~(-6),臭氧浓度为20.9 mg·L~(-1),n(O_3)/n(NO)=0.2,反应温度为100℃,模拟烟气总流量为1.0 L·min~(-1),模拟烟气相对湿度为4%的条件下,NO的转化率最高可达70%。此外,还对催化剂在不同条件下的稳定性和活性恢复情况进行了探究。实验最终实现了在低O_3浓度条件下达到较高NO转化率的目的,为烟气脱硝提供了一种具有应用潜力的新技术。  相似文献   

17.
为提高烟气脱硝效率,构建了微波辐照活性炭还原氮氧化物体系,通过对微波功率(温度)、反应空速、NO浓度、活性炭种类及粒径等影响因素的考察,研究了微波辐照活性炭还原NO体系的性能,通过反应动力学实验确定了活性炭还原NO反应的速率方程。研究结果表明,增大微波功率、减小反应空速均会提高NO还原效率,而改变NO浓度、活性炭种类以及粒径对NO还原效率无明显影响,微波功率为800 W,反应空速为2 000 h~(-1)时,对2 412 mg·m~(-3)的NO去除率可达99.8%,当NO浓度增至29 000 mg·m~(-3)时NO还原效率仍高达98.2%。通过反应动力学研究确定了反应的速率方程,其中反应级数为0.568 3,反应速率常数为14.71 s~(-1)。  相似文献   

18.
采用溶胶凝胶法制备TiO_2-SiO_2载体,浸渍法制备出V_2O_5-WO_3/TiO_2-SiO_2催化剂,利用BET、FESEM、XRD、TGA和激光拉曼对催化剂进行表征,研究催化剂的理化性质。以NH_3为还原剂,考察反应温度、SiO_2掺杂量、焙烧温度、空速和使用时间对SCR催化还原NO的性能影响。结果表明,V_2O_5-WO_3/TiO_2-SiO_2催化剂最佳反应温度在250~350℃。SiO_2掺杂能提高活性组分V_2O_5和WO_3在载体表面的分散性,制备出的催化剂具有更大的比表面积和更宽的温度区间,提高脱硝活性及稳定性。SiO_2掺杂量对催化剂性能影响较大,制备的催化剂中,TiO_2/SiO_2=2显示了最大催化活性,脱硝率均在60%以上,TiO_2/SiO_2=0.5制备的催化剂稳定性最差。焙烧温度对催化剂性能也有影响,焙烧温度在500和600℃时,最低脱硝率为58%和23%,最佳焙烧温度为400℃,脱硝率均在80%以上,具有优越的脱硝性能。实验结果还表明,空速对V_2O_5-WO_3/TiO_2-SiO_2催化剂的影响不大,在20 000 h~(-1)空速下催化剂的使用时间对脱硝率的影响也不大,48 h内能保持在99%左右,非常稳定。  相似文献   

19.
在流向变换催化燃烧反应体系中,通过操作参数(甲苯浓度、空速及切换周期)对热波形状与特征参数(波峰温度、平均温度和移动速度)影响的考察,结果表明,较佳的操作参数为:甲苯浓度800~3 200 mg/m3,空速2 000~12 000h-1,切换周期2~10 min,空速和甲苯浓度对热波移动速度的影响较大,热波波峰温度和反应器平均温度随着甲苯浓度的增加而增加,随着切换周期的缩短而升高,随着空速的增加先升高后降低,与固定床装置相比,在流向变换装置中催化剂的活性更高,甲苯去除率在96.5%以上。  相似文献   

20.
以Langmuire Hinshelwood机理为理论依据,基于MATLAB/Simulink建立DOC系统的数值计算模型,研究不同参数(如空速、氧气浓度、NO2/NOx比例)对氮氧化物(NOx)、一氧化碳(CO)、碳氢化合物(HC)转化效率的影响,并对部分工况进行了实验研究,从而验证数值模型的准确性。结果表明,空速的降低可以增大DOC对CO、HC、NO的氧化性能,这是由于排气在催化器内的反应时间增长。当排气温度为225~300℃时,减小空速对增大HC的氧化效率效果明显,当排气温度在175~450℃范围内,减小空速对增大NO的氧化效率影响明显;当O2浓度低于1%,排气温度在175~250℃时,CO转化效率增大,在250℃之后均接近100%。当O2浓度为10%时,温度的变化对CO的转化效率影响很小。当O2浓度大于1%时,温度的变化对NO的氧化效率影响较大;当排气温度在300~550℃时,NO2/NOx比例的变化对NO的转化效率影响较大。降低排气中NO2/NOx比例,能够在排气温度高于300℃时,明显提高NO的转化效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号