首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An animal’s use of space may be strongly influenced by habitat edges and neighboring conspecifics encountered in and around its home range. Habitat edges are known to affect species density and distribution, but their impact on home range use is largely unknown. Additionally, among large animals, interactions with neighbors become particularly important as increasing home range size leads to decreasing exclusivity of resource use, but the effect of neighbors on home range use remains poorly understood. Here, we examine the influence of neighbors and habitat edges on the ranging patterns of three groups of Phayre’s leaf monkeys (Trachypithecus phayrei crepusculus) in northeast Thailand over a period of more than 2 years. The study animals occupied dry evergreen forest, and adjacent patches of dry dipterocarp forest created a habitat edge and formed barriers between some groups. We found that the use of home range interiors was 50–90% higher than the border areas, indicating concentrated use of resources within the home range. The use of peripheral areas was influenced by social organization, the presence of neighboring groups, and forest edges. While one multimale group showed no particular habitat preference, two single-male groups preferred areas bordering dry dipterocarp habitat and avoided areas bordering neighboring groups, suggesting that the threat of neighbors mediated border presence. Additionally, groups may have been attracted to the forest edge, where conspecific competitors are absent and increased sunlight may increase resource abundance and/or quality. This study revealed that the use of border areas can be modulated by neighboring groups and habitat edges, thereby adding to our understanding of home range use among territorial species in heterogeneous habitats.  相似文献   

2.
Abstract:  Habitat destruction is one of the greatest threats to primates worldwide. To understand the impact of forest logging on the habitat use of primates in temperate mixed forest, we compared the range, habitat used, population size, and diet of a troop (ERT) of Sichuan snub-nosed monkeys ( Rhinopithecus roxellana ) in the Qinling Mountains before (1989), during (1997), and after (2002–2003) commercial logging. Logging significantly changed the composition of the forest and the food supply for the troop. Some areas were heavily logged and formed patches in the forest that lacked canopy cover. The troop moved 7 km away from their original range when logging took place and returned to their original range after logging stopped, but they avoided heavily logged areas that lacked canopy cover. Their movement indicated some degree of site fidelity in this species. Diet and home range changed after logging, but the population size remained stable, which suggests that this species has some ability to adapt to habitat changes. Our results may reflect a natural flexibility in primates to adapt to the changing food resources in temperate areas with marked seasonal variations in food availability and distribution. This flexibility may have contributed to their higher degree of resilience to habitat alterations caused by human activities compared with tropical forest primates that have a more specialized diet. Our findings provide important baseline information that will help decision makers in their efforts to conserve primates, especially in temperate regions, and to sustainably manage primate habitat.  相似文献   

3.
To investigate how visual cues are integrated into a navigational strategy for homing in the Australian sleepy lizard (Tiliqua rugosa), lizards were displaced beyond their home range, either with full access to visual cues or with no access to visual cues during the displacement. Homeward orientation was significantly worse when lizards were denied visual cues during the displacement than when they were not. However when lizards were displaced with their field of view restricted to the sky, their homeward orientation was equally as good as that of lizards displaced with no visual restriction. These experiments suggest that sleepy lizards use celestial cues to determine the compass bearing of the outward journey, and reverse this bearing to orient in the homeward direction (course reversal). In a subsequent experiment, lizards oriented randomly with respect to home when the parietal eye was entirely covered with a patch during the displacement and return, while control lizards fitted with a sham parietal eye patch were well oriented towards home. In both groups, the lateral eyes were unobstructed and had complete access to visual cues including celestial cues and landmarks. These results suggest that the parietal eye plays a highly significant role in sleepy lizard homing, perhaps mediating a sky polarization compass sense.  相似文献   

4.
Abstract:  Although species with large area requirements are sometimes used as umbrella species, their general utility as conservation tools is uncertain. We surveyed the species diversity of birds, butterflies, carabids, and forest-floor plants in forest sites across an area (1600 km2) in which we delineated large breeding home ranges of Northern Goshawk ( Accipiter gentilis ). We tested whether protection of the home ranges could serve as an effective umbrella to protect sympatric species of the four taxa. We also used an empirical habitat model of occupancy of home range to examine mechanisms by which the Northern Goshawk acts as an umbrella species. Among species richness, abundance, and species composition of the four taxa, only abundance and species composition of birds differed between sites located inside and outside home ranges, which was due to greater abundance of bird species that were prey of Northern Goshawks inside the home ranges. Thus, although home range indicated areas with high abundance of certain bird prey species, it was not effective as an indicator of the species diversity of all four taxa. We also did not find any difference in species richness, abundance, and species composition between sites predicted as occupied and unoccupied using the habitat model. In contrast, when we selected sites on the basis of each habitat variable in the model, habitat variables that selected sites either in agricultural or forested landscapes encompassed sites with high species richness or particular species composition. This result suggests that the low performance of the Northern Goshawk as an umbrella species is due to this species' preference for habitat in both agricultural and forested landscapes. Species that can adjust to changes in habitat conditions may not act as effective umbrella species despite having large home ranges.  相似文献   

5.
Summary Using the wood thrush (Hylocichla mustelina) as an example of a typical nocturnal migrant, we employed radio telemetry to follow breeding birds during the course of homing movements following displacements. Seven thrushes were displaced over distances of 6.5 to 17.3 km in a variety of directions from their nesting territories. The thrushes moved in a series of short flights (mean = 2.1 km) performed primarily at dawn. Consequently, the birds took several days to home from even these relatively short displacements. Thrushes flew under clear and solid overcast skies and even in light rain. The pooled individual flights of the birds were significantly oriented in the homeward direction (Fig. 2). Their orientation relative to home did not improve significantly as they progressed toward the goal. Three of the birds were documented to have returned to their home territories. The detailed tracks of the birds preclude the possibility that they homed by random search.  相似文献   

6.
Sleepy lizards are monogamous skinks which show high pair fidelity. This study reveals inter- and intrasexual differences in homeward orientation performance in this lizard. Male and female lizards were displaced during three phases of the spring activity period, the pre-pairing, pairing/mating, and post-pairing periods. All groups (with the exception of post-pairing males) were significantly oriented homewards, but males were significantly better oriented towards home than females during the pairing period. Furthermore, males were significantly better homeward oriented during the pre-pairing and pairing periods than in the post-pairing period. Similar results were observed for rate of movement away from the release site. In sleepy lizards, sex-based differences in homing behaviour are unlikely to be attributable to differences in the area of familiarity, or availability of orientation mechanisms. However differences in homing motivation may explain these differences. Males may miss mating if absent from the home range during the pre-pairing and pairing periods, while females may still be able to obtain a mating even when absent. Females however may be more motivated than males to return to the familiar home range during the post-pairing period to ensure efficient feeding during internal embryo development. Received: 16 February 1998 / Accepted after revision: 28 March 1998  相似文献   

7.
Abstract: Applied conservation biology must provide solutions for the conservation of species in modern landscapes, where prime habitats are being continuously fragmented and altered and animals are restricted to small, nonviable populations. We studied habitat selection in a fragmented population of endangered Iberian lynx (   Lynx pardinus ) by examining 14 years of radiotracking data obtained from lynx trapped in two different source areas. Habitat selection was studied independently for predispersal lynx in the source areas, for dispersing individuals through the region, and for postdispersing animals, most of which settled far from their point of origin. A multivariate analysis of variance showed that habitat use differed significantly among these phases and between area of origin, but not between sexes. The habitat type most used, and best represented within home ranges, was the mediterranean scrubland. Pine plantations were also important during and after dispersal. The rest of the habitats were either avoided (open habitats) or used according to availability ( pine and eucalyptus plantations) by dispersing lynx. Differences due to lynx origin were detected only during predispersal and dispersal and were observed because animals from each area had different habitat availability. Lynx with established territories did not use areas at random. They occupied patches of mediterranean scrubland more often than would be expected from scrubland availability during predispersal; the rest of the habitats were included within home ranges less than would be expected from their availability in the landscape. Results indicate that dispersing animals may use habitats of lower quality than habitats used by resident individuals, which suggests that conservation strategies applied across regions might be a viable objective.  相似文献   

8.
Summary A decline in the density of trees and the deterioration of the habitat of vervet monkeys (Cercopithecus aethiops) in Amboseli National Park, Kenya, have been accompanied by movement of vervet groups into unfamiliar areas. These home range shifts were documented over a period of 26 months. The largest group moved into the home ranges of neighboring groups and acquired more trees, a resource that had become more limited. The groups whose home ranges were encroached upon did not share their home ranges with the intruders, but instead moved into areas that were unoccupied and had a lower density of trees. The largest group was thus more successful than smaller groups in competition for limited resources. For all but one group, movement into new areas was directly associated with the disappearances of female and immature monkeys. Most of the disappearances were attributable to predation. These results suggest that the cost of predation in unfamiliar areas may contribute to the evolution of philopatry in vervets. However, under unstable conditions, resource competition forces these animals to disperse (in groups) despite the high risk of predation. Offprint requests to: L.A. Isbell  相似文献   

9.
Abstract:  The ability of populations to be connected across large landscapes via dispersal is critical to long-term viability for many species. One means to mitigate population isolation is the protection of movement corridors among habitat patches. Nevertheless, the utility of small, narrow, linear features as habitat corridors has been hotly debated. Here, we argue that analysis of movement across continuously resistant landscapes allows a shift to a broader consideration of how landscape patterns influence connectivity at scales relevant to conservation. We further argue that this change in scale and definition of the connectivity problem improves one's ability to find solutions and may help resolve long-standing disputes regarding scale and definition of movement corridors and their importance to population connectivity. We used a new method that combines empirically derived landscape-resistance maps and least-cost path analysis between multiple source and destination locations to assess habitat isolation and identify corridors and barriers to organism movement. Specifically, we used a genetically based landscape resistance model for American black bears ( Ursus americanus ) to identify major movement corridors and barriers to population connectivity between Yellowstone National Park and the Canadian border. Even though western Montana and northern Idaho contain abundant public lands and the largest wilderness areas in the contiguous United States, moving from the Canadian border to Yellowstone Park along those paths indicated by modeled gene flow required bears to cross at least 6 potential barriers. Our methods are generic and can be applied to virtually any species for which reliable maps of landscape resistance can be developed.  相似文献   

10.
Summary Young homing pigeons from the same German stocks were housed in two lofts, one in southern Germany, near Munich, and one in Italy, near Pisa. In the course of 1 year, two synchronized releases at sites 22–25 km NNW and SSE from each of the lofts were conducted every month. The pigeons that returned were released a second time at a site about 75 km east of home.Both initial homeward orientation and homing success were considerably better in Italy than in Germany. Annual cycles, with maxima in summer and minima in winter, were observed in both countries. They were most pronounced in initial orientation in Italy and in homing performance in Germany. Correlations between homing parameters and ambient temperature correspond to the annual cycles, but they do not indicate that the geographical and seasonal differences in homing behaviour are directly caused by actual temperature at the time of release.Our findings (together with earlier ones) suggest that environmental conditions may be variably conducive to the homeward orientation of pigeons according to spatial and temporal variations in the climate.  相似文献   

11.
Habitat qualities, such as food supply or access to refuges, often influence home-range size. Furthermore, such qualitative differences usually lead to conspecific competition over space, which can be an important factor in determining the distribution of individuals within populations. In carnivores, patterns of resource dispersion are hypothesized to determine home range-size and group size. But in contests over space (or other resources), larger groups usually dominate smaller ones, and group size should therefore also affect home-range size. Here I describe the space use of lions, Panthera leo, in the Selous Game Reserve, Tanzania, and ask whether space use is related to pride size, habitat, or relatedness. Home ranges varied in size, but size showed no correlation to number of adult females in the pride or to habitat type. Lions exhibited a significant preference for riverine and short-grass habitat, and a significant avoidance of acacia woodland. Habitat preference ratios largely reflected prey availability in each habitat. Outer areas, as well as core areas of home ranges, were often used by two or more prides. Overlaps showed no correlation to relatedness among prides or habitat type. Thus, whereas home-range sizes and overlaps were determined by factors that could not be revealed by demographic factors or analyses of habitat composition or genetic structure, lion space use within each home range seemed driven mostly by prey availability, which mainly varies with habitat type.  相似文献   

12.
Abstract:  The difficult task of managing species of conservation concern is likely to become even more challenging due to the interaction of climate change and invasive species. In addition to direct effects on habitat quality, climate change will foster the expansion of invasive species into new areas and magnify the effects of invasive species already present by altering competitive dominance, increasing predation rates, and enhancing the virulence of diseases. In some cases parapatric species may expand into new habitats and have detrimental effects that are similar to those of invading non-native species. The traditional strategy of isolating imperiled species in reserves may not be adequate if habitat conditions change beyond historic ranges or in ways that favor invasive species. The consequences of climate change will require a more active management paradigm that includes implementing habitat improvements that reduce the effects of climate change and creating migration barriers that prevent an influx of invasive species. Other management actions that should be considered include providing dispersal corridors that allow species to track environmental changes, translocating species to newly suitable habitats where migration is not possible, and developing action plans for the early detection and eradication of new invasive species.  相似文献   

13.
Summary To test the present hypotheses concerning the functioning of the bird's magnetic compass, pigeons reared near the magnetic and geographic equator (Fortaleza, NE Brasil) were released 300 km NW of their home in the horizontal field at the magnetic equator. Pigeons released in the morning and in the afternoon were roughly homeward oriented whereas pigeons released at noon with the sun near the zenith vanished close to magnetic north. According to the Wiltschko model of the magnetic compass they should not be able to pick up specific directions. A considerable number of young and inexperienced pigeons returned home against a continuously blowing trade wind. This result contradicts the hypothesis of olfactory navigation as currently discussed.  相似文献   

14.
Fish migrate to spawn, feed, seek refuge from predators, and escape harmful environmental conditions. The success of upstream migration is limited by the presence of barriers that can impede the passage of fish. We used a spatially explicit modeling strategy to examine the effects of barriers on passage for 21 native and non-native migratory fish species and the amount of suitable habitat blocked for each species. Spatially derived physical parameter estimates and literature based fish capabilities and tolerances were used to predict fish passage success and habitat suitability. Both the fish passage and the habitat suitability models accurately predicted fish presence above barriers for most common, non-stocked species. The fish passage model predicted that barriers greater than or equal to 6 m block all migratory species. Chinook salmon (Oncorhynchus tshawytscha) was expected to be blocked the least. The habitat suitability model predicted that low gradient streams with intact habitat quality were likely to support the highest number of fish species. The fish passage and habitat suitability models were intended to be used by environmental managers as strategy development tools to prioritize candidate dams for field assessment and make decisions regarding the management of migratory fish populations.  相似文献   

15.
The California sheephead, Semicossyphus pulcher Ayres (Labridae), is a carnivorous, temperate, rocky-reef/kelp-bed species that is highly sought in recreational and commercial fisheries. Fine-scale acoustic telemetry tracking was used to ascertain the home range and habitat utilization of S. pulcher. Sixteen adult S. pulcher (26–38 cm SL) were surgically fitted with small acoustic transmitters and manually tracked for up to 144 h during multiple, 24-h periods between March 2001 and August 2002 within the Catalina Marine Science Center Marine Life Reserve (33°26N; 118°29W). A geographic information system was used to calculate home range sizes (95% kernel utilization distributions) and habitat use. Tracking of the first five fish over 24 h confirmed that S. pulcher were strictly diurnal, so the remaining 11 fish were tracked from 1 h before sunrise to 1 h after sunset. Home ranges varied greatly, from 938 to 82,070 m2, with a mean (±SD) of 15,134±26,007 m2. Variability in home range sizes among fish was attributed to differences in habitat shape (embayment vs. contiguous coastline) and to natural habitat boundaries (deep, sandy expanses) in adjacent areas within the reserve. There was a significant relationship between fish length and proportion of time spent in different habitats (sand vs. reef). S. pulcher were found within rocky-reef areas 54% of the time, and, within these areas, a greater percentage of daytime was spent in high-relief areas. Based on the relatively small size and persistence of home ranges of adult S. pulcher, no-take reserves, if they contain appropriate habitat, would provide adequate protection for their stocks.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00227-005-1573-1.Communicated by J.P. Grassle, New Brunswick  相似文献   

16.
Animal movement patterns and use of space depend upon food and nonfood resources, as well as conspecific and heterospecific interactions, but models of habitat use often neglect to examine multiple factors and rarely include marsupials. We studied habitat use in an Australian population of koalas (Phascolarctos cinereus) over a 6-year period in order to determine how koalas navigate their environment and partition limited patchy food and nonfood resources. Tree selection among koalas appears to be mediated by folar chemistry, but nonfood tree selection exerts a major impact on home range use due to thermoregulatory constraints. Koalas moved on a daily basis, during both day and night, but daytime resting site was not necessarily in the same location as nighttime feeding site. Koalas had substantial home range overlap in the near absence of resource sharing with less than 1% of trees located in areas of overlap used by multiple koalas. We suggest that koala spatiotemporal distribution and habitat use are probably based upon a community structure of individuals, with a checkerboard model best describing overlap in home range area but not in resource use. Nonfood refugia and social networks should be incorporated into models of animal range and habitat use.  相似文献   

17.
Understanding the environmental contributors to population structure is of paramount importance for conservation in urbanized environments. We used spatially explicit models to determine genetic population structure under current and future environmental conditions across a highly fragmented, human‐dominated environment in Southern California to assess the effects of natural ecological variation and urbanization. We focused on 7 common species with diverse habitat requirements, home‐range sizes, and dispersal abilities. We quantified the relative roles of potential barriers, including natural environmental characteristics and an anthropogenic barrier created by a major highway, in shaping genetic variation. The ability to predict genetic variation in our models differed among species: 11–81% of intraspecific genetic variation was explained by environmental variables. Although an anthropogenically induced barrier (a major highway) severely restricted gene flow and movement at broad scales for some species, genetic variation seemed to be primarily driven by natural environmental heterogeneity at a local level. Our results show how assessing environmentally associated variation for multiple species under current and future climate conditions can help identify priority regions for maximizing population persistence under environmental change in urbanized regions.  相似文献   

18.
Climate changes impose requirements for many species to shift their ranges to remain within environmentally tolerable areas, but near‐continuous regions of intense human land use stretching across continental extents diminish dispersal prospects for many species. We reviewed the impact of habitat loss and fragmentation on species’ abilities to track changing climates and existing plans to facilitate species dispersal in response to climate change through regions of intensive land uses, drawing on examples from North America and elsewhere. We identified an emerging analytical framework that accounts for variation in species' dispersal capacities relative to both the pace of climate change and habitat availability. Habitat loss and fragmentation hinder climate change tracking, particularly for specialists, by impeding both propagule dispersal and population growth. This framework can be used to identify prospective modern‐era climatic refugia, where the pace of climate change has been slower than surrounding areas, that are defined relative to individual species' needs. The framework also underscores the importance of identifying and managing dispersal pathways or corridors through semi‐continental land use barriers that can benefit many species simultaneously. These emerging strategies to facilitate range shifts must account for uncertainties around population adaptation to local environmental conditions. Accounting for uncertainties in climate change and dispersal capabilities among species and expanding biological monitoring programs within an adaptive management paradigm are vital strategies that will improve species' capacities to track rapidly shifting climatic conditions across landscapes dominated by intensive human land use.  相似文献   

19.
Abstract: Understanding the way in which habitat fragmentation disrupts animal dispersal is key to identifying effective and efficient conservation strategies. To differentiate the potential effectiveness of 2 frequently used strategies for increasing the connectivity of populations in fragmented landscapes—corridors and stepping stones—we combined 3 complimentary methods: behavioral studies at habitat edges, mark‐recapture, and genetic analyses. Each of these methods addresses different steps in the dispersal process that a single intensive study could not address. We applied the 3 methods to the case study of Atrytonopsis new species 1, a rare butterfly endemic to a partially urbanized stretch of barrier islands in North Carolina (U.S.A.). Results of behavioral analyses showed the butterfly flew into urban and forested areas, but not over open beach; mark‐recapture showed that the butterfly dispersed successfully through short stretches of urban areas (<500 m); and genetic studies showed that longer stretches of forest (>5 km) were a dispersal barrier, but shorter stretches of urban areas (≤5 km) were not. Although results from all 3 methods indicated natural features in the landscape, not urbanization, were barriers to dispersal, when we combined the results we could determine where barriers might arise: forests restricted dispersal for the butterfly only when there were long stretches with no habitat. Therefore, urban areas have the potential to become a dispersal barrier if their extent increases, a finding that may have gone unnoticed if we had used a single approach. Protection of stepping stones should be sufficient to maintain connectivity for Atrytonopsis new species 1 at current levels of urbanization. Our research highlights how the use of complementary approaches for studying animal dispersal in fragmented landscapes can help identify conservation strategies.  相似文献   

20.
Summary In order to find out whether the different ways that pigeons are raised and maintained at the various lofts affect their orientation behavior, especially the selection of navigational factors, a group of birds was raised according to the procedures of our Italian colleagues in a wind-exposed loft on the roof. The behavior of these R-birds was then compared with that of G-birds living in a garden loft, raised and trained according to the normal Frankfurt procedure. When R-birds were made anosmic by closing the nostril with cotton during transportation and a local anesthetic was used at release, their reaction was similar to that of Italian pigeons: the deviation of their vanishing bearings from the home direction increased significantly, leading to a marked decrease in homeward orientation. In contrast, the orientation of the anosmic G-birds did not differ from that of their controls; their directional selections agreed with those of the controls of the R-group. These data indicate that the conditions of raising and maintaining homing pigeons may be of crucial importance in determining the pigeons' attitude toward olfactory input. Finally, olfactory orientation is discussed; the paradoxical finding that the G-birds, not using olfaction, oriented like the controls of the R-group that did use olfactory input, leads to the question of whether olfactory input really conveys navigational information to the birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号