首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Climatic variation and the possibility of anthropogenically-caused climatic change have emphasized the need for global hydrological cycle models able to simulate the impacts of climate on the atmosphere, continents and oceans. To date, global atmospheric and oceanic models have been developed but, to the best of the author's knowledge, there are no continental hydrological models. Instead, hydrological models continue to develop at the catchment scale and the land phase component of the global hydrologic cycle is modeled as parameterizations within atmospheric models. The author argues that this is not the best solution; that the present land surface components of atmospheric models do not accurately model land phase hydrology and that, instead, atmospheric and oceanic models should be linked to continental-scale hydrological models to form a true model of the global hydrological cycle.  相似文献   

2.
ABSTRACT: Improving the reliability of parametric hydrologic models (sometimes called cenceptual rainfall-runoff models) in the continuous simulation of runoff from ungaged catchments has been frustrated by difficulties in estimating model parameters from catchment characteristics. An underlying problem is that these models use parameters to represent catchments as a whole, whereas data on catchment characteristics are collected at multiple field locations and are difficult to transform into one measure of collective impact. Subdividing the catchment and calibrating a stochastic parametric model to estimate distributions for the parameters that covered the range of observed streamflow values was found to improve the simulations. This paper presents an optimization of the amount of subdivision to use in simulation with a version of the Stanford Watershed Model using available climatological data. The calibration process assumes that catchment heterogeneity introduces errors that can be reduced by calibrating parameters as spatial distributions rather than single values. Calibrations for three diverse small gaged catchments located in California and in Virginia found the optimal number of subdivisions to range from 4 to 25 and the optimal scale to range from 0.3 to 2.1 mi2.  相似文献   

3.
To preserve the quality of surface water, official French regulations require farmers to keep a minimum acreage of grassland, especially bordering rivers. These agro-environmental measures do not account for the circulation of water within the catchment. This paper examines whether it is possible to design with the farmers agri-environmental measures at field and catchment scale to prevent soil erosion and surface water pollution. To support this participatory approach, the hydrology and erosion model STREAM was used for assessing the impact of a spring stormy event on surface runoff and sediment yield with various management scenarios. The study was carried out in collaboration with an agricultural committee in an area of south-western France where erosive runoff has a major impact on the quality of surface water. Two sites (A and B) were chosen with farmers to discuss ways of reducing total surface runoff and sediment yield at each site. The STREAM model was used to assess surface runoff and sediment yield under current cropping pattern at each site and to evaluate management scenarios including grass strips implementation or changes in cropping patterns within the catchment. The results of STREAM simulations were analysed jointly by farmers and researchers. Moreover, the farmers discussed each scenario in terms of its technical and economical feasibility. STREAM simulations showed that a 40 mm spring rainfall with current cropping patterns led to 3116 m3 total water runoff and 335 metric tons of sediment yield at site A, and 3249 m3 and 241 metric tons at site B. Grass strips implementation could reduce runoff for about 40% and sediment yield for about 50% at site A. At site B, grass strips could reduce runoff and sediment yield for more than 50%, but changes in cropping pattern could reduce it almost totally. The simulations led to three main results: (i) grass strips along rivers and ditches prevented soil sediments from entering the surface water but did not reduce soil losses, (ii) crop redistribution within the catchment was as efficient as planting grass strips, and (iii) efficient management of erosive runoff required coordination between all the farmers using the same watershed. This study shown that STREAM model was a useful support for farmers' discussions about how to manage runoff and sediment yield in their fields.  相似文献   

4.
An equivalence is proposed between two rainfall‐runoff methods with a long history of use in the United States and Europe. In watersheds where variable source areas dominate runoff, the two methods can have comparable probability distribution functions of moisture deficit, and therefore predict similar saturated runoff source areas. A novel approach is introduced to determine the S parameter in the Natural Resources Conservation Service (NRCS) method. This approach constrains S by the physical soil and topography characteristics of the catchment and depth to water table. The NRCS curve number method is at the core of many rainfall‐runoff models in hydrology. As a simple lumped parameter method, it is often scrutinized because it is not obvious how to derive S from catchment hydromorphological characteristics. The novel approach provides a clear physical meaning for S, allowing better estimation of this parameter in humid shallow water table environments where the variable source area can be the dominant runoff mechanism.  相似文献   

5.
The critical load concept has become a valuable tool for policymakers in the European negotiations on emission reductions. Despite the international acceptance, ongoing validation of critical load methodology is of the utmost importance to avoid a situation where the calculation results are difficult to defend. In this paper we explore the potential of using the steady state soil chemistry model PROFILE as an alternative to the Steady State Water Chemistry (SSWC) method for calculating critical loads of acidity. The hypothesis is that the uncertainty in prediction of preindustrial leaching of base cations is reduced when soil properties instead of lake chemistry are used as input data. Paleolimnological reconstructions of preindustrial lake chemistry are used to test PROFILE. As PROFILE requires soil data that are not generally available on a catchment level, we used distributions of crucial parameters from soil survey data within the vicinity of five lakes for which paleoecological pH reconstructions were available. An important concern is the characterization of catchment hydrology. A calibration of the "effective" soil depth, needed to give PROFILE predictions that coincided with paleolimnology, suggested that approximately 0.6 m of the total soil depth was hydrologically active in supplying acid neutralizing capacity (ANC) to runoff through weathering. At present, there is insufficient evidence to either recommend or reject the PROFILE model for surface water critical loads. Before such a judgement can be made, the approach presented here has to be tested for other regions, and the definition of catchment hydrology needs to be investigated further.  相似文献   

6.
Maurer, Edwin P., Levi D. Brekke, and Tom Pruitt, 2010. Contrasting Lumped and Distributed Hydrology Models for Estimating Climate Change Impacts on California Watersheds. Journal of the American Water Resources Association (JAWRA) 46(5):1024–1035. DOI: 10.1111/j.1752-1688.2010.00473.x Abstract: We compare the projected changes to streamflows for three Sierra Nevada rivers using statistically downscaled output from 22 global climate projections. The downscaled meteorological data are used to drive two hydrology models: the Sacramento Soil Moisture Accounting model and the variable infiltration capacity model. These two models differ in their spatial resolution, computational time step, and degree and objective of calibration, thus producing significantly different simulations of current and future streamflow. However, the projected percentage changes in monthly streamflows through mid-21st Century generally did not differ, with the exceptions of streamflow during low flow months, and extreme low flows. These findings suggest that for physically based hydrology models applied to snow-dominated basins in Mediterranean climate regimes like the Sierra Nevada, California, model formulation, resolution, and calibration are secondary factors for estimating projected changes in extreme flows (seasonal or daily). For low flows, hydrology model selection and calibration can be significant factors in assessing impacts of projected climate change.  相似文献   

7.
This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.  相似文献   

8.
Abstractions of surface and groundwater for irrigation in Scotland are currently subject to control in only two small catchments. Under the terms of the EU Water Framework Directive, it will be necessary to introduce new legislation to control abstractions elsewhere. To help in the development of appropriate policy for Scotland a study has been carried out to examine the significance of irrigation and the effectiveness of different types of control strategies in terms of the economics of potato cropping and stream hydrology in Scotland. This paper presents the findings of the hydrological study and highlights some of the spatial and temporal issues that need to be considered in the selection of control mechanisms, if they are to be successful in achieving objectives for environmental improvement.The study was focussed on two catchments in the east of Scotland, the Tyne and West Peffer. The effectiveness of several different abstraction control strategies was examined to see how stream flows in the catchment would be modified by their implementation. The results of the study demonstrated that the West Peffer catchment in particular is significantly affected by irrigation abstractions. Control mechanisms based on allowable monthly abstraction volumes and flow-based abstraction bans would be of considerable help in restoring stream flows to their natural levels, but would modify the hydrological regime in slightly different ways. A spatial analysis of stream flows demonstrated that implementation of controls based on a single monitoring point may be ineffective at maintaining acceptable levels of flow throughout the catchment and that this may require a tighter control at the monitoring point.  相似文献   

9.
The objective of this study was to identify the main sources of variation in pesticide losses at field and catchment scales using the dual permeability model MACRO. Stochastic simulations of the leaching of the herbicide MCPA (4-chloro-2-methylphenoxyacetic acid) were compared with seven years of measured concentrations in a stream draining a small agricultural catchment and one year of measured concentrations at the outlet of a field located within the catchment. MACRO was parameterized from measured probability distributions accounting for spatial variability of soil properties and local pedotransfer functions derived from information gathered in field- and catchment-scale soil surveys. At the field scale, a single deterministic simulation using the means of the input distributions was also performed. The deterministic run failed to reproduce the summer outflows when most leaching occurred, and greatly underestimated pesticide leaching. In contrast, the stochastic simulations successfully predicted the hydrologic response of the field and catchment and there was a good resemblance between the simulations and measured MCPA concentrations at the field outlet. At the catchment scale, the stochastic approach underestimated the concentrations of MCPA in the stream, probably mostly due to point sources, but perhaps also because the distributions used for the input variables did not accurately reflect conditions in the catchment. Sensitivity analyses showed that the most important factors affecting MACRO modeled diffuse MCPA losses from this catchment were soil properties controlling macropore flow, precipitation following application, and organic carbon content.  相似文献   

10.
We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organic matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.  相似文献   

11.
Mittman, Tamara, Lawrence E. Band, Taehee Hwang, and Monica Lipscomb Smith, 2012. Distributed Hydrologic Modeling in the Suburban Landscape: Assessing Parameter Transferability from Gauged Reference Catchments. Journal of the American Water Resources Association (JAWRA) 48(3): 546-557. DOI: 10.1111/j.1752-1688.2011.00636.x Abstract: Distributed, process-based models of catchment hydrologic response are potentially useful tools for the assessment of Low Impact Development (LID) techniques in urbanized catchments. Their application is often limited, however, by the lack of continuous streamflow records to calibrate poorly constrained parameters. This article examines the transferability of soil and groundwater parameters from a forested reference catchment to a nearby suburban catchment. We use the Regional Hydro-Ecologic Simulation System (RHESSys) to develop hydrologic models of one gauged forested and one ungauged suburban catchment within the Baltimore Ecosystem Study (BES) study area. We use a parameter uncertainty framework to calibrate soil and groundwater parameters for the forested catchment, and discrete measurements of streamflow from the suburban catchment to assess parameter transferability. Results indicate that the transfer of soil and groundwater parameters from forested reference to nearby suburban catchments is viable, with performance measures for the suburban catchment often exceeding those for the forested catchment. We propose that the simplification of hydrologic processes in urbanized catchments may account for the increase in model performance in the suburban catchment.  相似文献   

12.
ABSTRACT: While much is known about the hydrology of forested mountain catchments in the Pacific Northwest, important research questions remain. For example, the dynamics of storm precipitation amounts and the modeling of catchment outflows represent a continuing research need. Without an improved understanding of the spatial and temporal aspects of storm precipitation patterns, our ability to evaluate and improve physically-based hydrologic models is limited. From a practical perspective, tens of thousands of kilometers of access roads have been constructed across forested catchments of the Pacific Northwest. Yet, few forestry research programs focus on road drainage (e.g., ditches, culverts, fords). The few studies that address this issue indicate road drainage systems need to function effectively over a wide range of flow events and terrain conditions. In addition, historical forest practices associated with hillslopes and riparian systems have altered the character of many Pacific Northwest aquatic ecosystems. If restoration of these systems is to be effective, research efforts are needed to better understand the linkages between riparian forests, geomorphic processes, and hydrologic disturbance regimes.  相似文献   

13.
The spatial and temporal dynamics in the stream water NO(3)-N concentrations in a major European river-system, the Garonne (62,700 km(2)), are described and related to variations in climate, land management, and effluent point-sources using multivariate statistics. Building on this, the Hydrologiska Byr?ns Vattenbalansavdelning (HBV) rainfall-runoff model and the Integrated Catchment Model of Nitrogen (INCA-N) are applied to simulate the observed flow and N dynamics. This is done to help us to understand which factors and processes control the flow and N dynamics in different climate zones and to assess the relative inputs from diffuse and point sources across the catchment. This is the first application of the linked HBV and INCA-N models to a major European river system commensurate with the largest basins to be managed under the Water Framework Directive. The simulations suggest that in the lowlands, seasonal patterns in the stream water NO(3)-N concentrations emerge and are dominated by diffuse agricultural inputs, with an estimated 75% of the river load in the lowlands derived from arable farming. The results confirm earlier European catchment studies. Namely, current semi-distributed catchment-scale dynamic models, which integrate variations in land cover, climate, and a simple representation of the terrestrial and in-stream N cycle, are able to simulate seasonal NO(3)-N patterns at large spatial (>300 km(2)) and temporal (> or = monthly) scales using available national datasets.  相似文献   

14.
The National Weather Service is nearing the conclusion of a five year period of transition from index type catchment modelling to the use of conceptual hydrologic models. The decision to make this technological change was based on an extensive research project in which various catchment models were tested in a wide variety of basins and their strong and weak points ascertained. This project is described. Some of the problems involved in the changeover, which are discussed, are practical parameter optimization methods, computer requirements for the more complex technology, data requirements, fitting of the catchment model to major river systems, training of personnel and staffing problems.  相似文献   

15.
ABSTRACT: According to a concept known as partial area hydrology, watershed areas are separated into hydrologically active and passive subareas. The literature relating to the development of the partial area concept is reviewed briefly and the relationship of partial area hydrology to geology, soils, and micrometeorology is illustrated. The potential application of partial area hydrology is discussed with respect to present hydrologic techniques, future hydrologic models, urban hydrology, water quality, and water management. Suggestions for identifying and delineating the contributing areas are discussed.  相似文献   

16.
ABSTRACT: This report presents the results of a survey of hydrology faculties of colleges and universities in the United States and Canada. Information is presented on topics covered in classes, allocation of class periods to individual topics, textbooks, prerequisites, computer use, and accreditation categories for hydrology courses offered by engineering departments. Hydrology courses generally require courses in fluid mechanics, mathematics, statistics, and computer science as prerequisites. Topics that receive the largest allocation of time in both introductory and advanced courses include rainfall-runoff relations, the hydrologic cycle, routing and open channel flow, and statistics. Advanced courses place greater emphasis on watershed models than do the introductory courses. Hydrology courses at both levels allocate the smallest amounts of time to snow hydrology ground-water hydrology, and “other topics.” Very few courses include field or experimental work. In a discipline where computer modeling is a major tool, this lack of field and data-collection experience may lead students to underestimate the uncertainties associated with data used to calibrate models and the modeling results themselves. Survey responses on hydrology courses taught in departments other than civil engineering were too few to permit detailed analysis. Most of these courses spend approximately two-thirds of available class time on the same topics as presented in engineering hydrology courses. The balance of class time is spent on topics that emphasize the specialized interest of the particular discipline, such as soil physics and soil moisture in agricultural engineering.  相似文献   

17.
ABSTRACT: A mesoscale meteorological model, a surface hydrology model, and a ground-water hydrology model are linked to simulate the hydrographic response of a large river basin to a single storm. Synoptic climatology is employed to choose a representative hydro-climatic event. The mesoscale meteorological model uses three nested domains to simulate relatively high-resolution precipitation over a sub-basin of the Susquehanna River Basin. The hydrology models simulate surface runoff and ground-water baseflow using both analyzed and simulated precipitation. The hydrologic abstractions are handled using both Curve Number and Green-Ampt routines. To support the linkage of the numerical models, special attention is given to data resampling and reprojection. The mesoscale meteorological model simulation captures the spatial and temporal structure of the storm event, while the hydrology models represent the timing of the event well. The Curve Number method generates a realistic hydrograph with both analyzed and simulated precipitation. In contrast, the hydrographic response generated by the Green-Ampt routine is inferior. Several interrelated factors contribute to these results, including: the nature of the precipitation event chosen for the experiment; the tendency of the mesoscale meteorological model to underpredict low intensity, widespread precipitation in this case; and the influence of the surface soil-texture characteristics on infiltration rates.  相似文献   

18.
In the Appalachian region of the eastern United States, mountaintop removal mining (MTM) is a dominant driver of land‐cover change, impacting 6.8% of the largely forested 4.86 million ha coal fields region. Recent catastrophic flooding and documented biological impairment downstream of MTM has drawn sharp criticism to this practice. Despite its extent, scale, and use since the 1970s, the impact of MTM on hydrology is poorly understood. Therefore, the goal of this study was a multiscale evaluation to establish the nature of hydrologic impacts associated with MTM. To quantify the extent of MTM, land‐cover change over the lifetime of this practice is estimated for a mesoscale watershed in southern West Virginia. To assess hydrologic impacts, we conducted long‐term trend analyses to evaluate for systematic changes in hydrology at the mesoscale, and conducted hydrometric and response time modeling to characterize storm‐scale responses of a MTM‐impacted headwater catchment. Results show a general trend in the conversion of forests to mines, and significant decreases in maximum streamflow and variability, and increases in base‐flow ratio attributed to valley fills and deep mine drainage. Decreases in variability are shown across spatial and temporal scales having important implications for water quantity and quality. However, considerable research is necessary to understand how MTM impacts hydrology. In an effort to inform future research, we identify existing knowledge gaps and limitations of our study.  相似文献   

19.
20.
ABSTRACT: We tested the common assumption, made when expressing phosphorus export on an areal basis, that this export is a linear function of catchment area and found it wanting. The data show that in agricultural catchments, TP (total phosphorus) export varies as the 0.77 power of drainage basin area, resulting in a reduction in phosphorus delivery per unit area with increasing catchment size. Following further division of catchments according to agricultural practice, we found that this spatial scale effect is restricted to row crops and pastures. We present simple statistical models to allow a comparison of TP export from catchments of different size. Such models are not needed for nonrow crops, mixed agricultural and forested catchments, where TP export is a linear function of catchment size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号