首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental assessment consists of scientific studies to define contamination at a potential release site or sites and to evaluate the risk posed to human health and the environment. These studies are performed within a prescribed regulatory framework. There is a high degree of uncertainty associated with preparing cost and schedule estimates for activities such as site characterization, risk assessment, and evaluation of remediation alternatives. This article describes the approach that Sandia National Laboratories is using to meet the challenge of estimating the assessment phase of its Environmental Restoration Project. Emphasis is placed on lessons learned, with examples given to illustrate the approach.  相似文献   

2.
The ten management guidelines discussed in this article can help site owners (and their remediation consultants) achieve environmental results that are acceptable to government regulators—at the lowest possible cost to all concerned. They remind site owners to learn everything possible about the nature and extent of their contamination problems, then maintain control of the cleanup process by defining obligations in consulting contracts and establishing positive working relationships with regulatory agencies.  相似文献   

3.
Current cost estimates for the assessment and remediation of environmental contamination at facilities operated by the U.S. Department of Energy (DOE) are based largely on assumptions, with a resulting high level of uncertainty. Therefore, consistent and reliable methods for estimating the uncertainty inherent in the estimates are of vital importance. This article presents an approach and format for estimating contingency in DOE's Environmental Restoration Program. The method involves an analysis of risk factors having a potential to affect the cost of the major elements in the estimate. Application of the contingency analysis to a project site is included in the discussion.  相似文献   

4.
Due to the nature of contamination typically found at former MGP (manufactured gas plant) sites, excavation and thermal desorption of MGP wastes has proven to be an effective method for the remediation of MGP‐contaminated soil. The use of on‐site thermal desorption enables MGP sites to be quickly remediated at a low cost. Tar pits, holders, and other underground storage structures typically contain coal tar residuals and waste from former operations, and the areas around these structures are often significantly contaminated. Thus, excavation techniques, odor and vapor management, and material preparation for the treatment method are important factors to consider when developing a site remediation strategy. This article reviews typical excavation and handling methods associated with the remediation of former MGP sites and discusses the treatment of MGP wastes using on‐site thermal desorption technology. © 2001 John Wiley & Sons, Inc.  相似文献   

5.
6.
Locating and quantifying free-phase volatile organic compounds (VOCs) in the subsurface represent one of the more difficult challenges facing hazardous waste site remediation programs. Successful remediation programs require reliable data on the size and extent of potential VOC contamination sources. Improving subsurface quantification of VOCs requires a large number of reliable low-cost samples. Satisfying this objective relies on improved sampling techniques, field analysis of samples, and a modified quality assurance program. This paper describes an integrated approach using conventional split-spoon samplers, microcore sampling, hexane extractions, and a field gas chromatograph with an autosampler as part of a technical demonstration for innovative remediation technologies. Using this approach, it was possible to delineate a subsurface source of free-phase VOCs at a cost of $15 per sample. The distribution of dense nonaqueous phase liquid determined by this sampling approach agreed with the conceptual model for the site.  相似文献   

7.
Successful soil remediation depends on many factors that project managers know well: accurate assessments as to the extent and nature of contamination; the right choice and proper implementation of remediation technologies; and, deft negotiation of regulatory requirements and review. One equally important factor that often receives too little attention is stakeholder communication. Effective communication strategies and tactics can help avoid project delays and cost overruns related to stakeholder concerns and opposition, and inoculate owners and others against frivolous litigation. Remediation projects also offer opportunities to bolster the brands and images of engaged parties, including owners, engineering and environmental contractors—and even the regulatory agencies that oversee them. Understanding the skills and techniques necessary to communicate effectively when people are angry, upset, and suspicious of everything you say is essential to project success. This article will explore six rules for effective communication—brought to life by genuine case studies where they have been followed to positive effect—that encapsulate the skills and techniques project managers can apply in difficult situations involving the remediation of contaminated sites. ©2016 Wiley Periodicals, Inc.  相似文献   

8.
Sandia National Laboratories' Environmental Restoration (ER) Project remediated the Radioactive Waste Landfill and Chemical Disposal Pits (RWL/CDPs) sites located in Albuquerque, New Mexico. The remediation was conducted in 1996 using conventional excavation, as well as hybrid remote robotic manipulation technology at a cost of approximately $3 million. Wastes generated included approximately 73 cubic meters (m3) of debris (including thermal batteries, spark gap tubes, radioactive sources, weapons components, and some classified material), 535 m3 of plutonium-contaminated soil, and 2,294 m3 of soil contaminated with thorium, cesium, uranium, and tritium. The remediation was successful since the project goal of risk reduction was accomplished and no injuries or negative occurrences resulted. This cleanup is one example of the Department of Energy's (DOE's) accelerated approach to environmental restoration. The remediation was performed as a voluntary corrective measure to reduce schedule and budget, compared with the traditional approach following Resource Conservation and Recovery Act (RCRA) regulations.  相似文献   

9.
Bioremediation has proven to be a powerful weapon in cleaning up contaminated soils and aquifers. This article gives the perspective of time, cost, and extent of remediation. It warns that disappointment will follow unless adequate site assessments are made and that the support of nutrients and supply of oxygen must be assured. Bioremediation cannot deal with all contaminants and the process is not instantaneous. However, the method is fail safe. In spite of any mistakes we may make, nature will eventually come to our rescue.  相似文献   

10.
Environmental professionals are often tasked with projecting the cost to bring a contaminated site or portfolio of sites to regulatory closure. Fortunately, there are a number of useful guidance documents and industry publications available to assist in such cost projections. However, the usefulness of such tools is limited when adequate costing information is lacking, such as (a) the nature and extent of contamination; (b) regulatory requirements; (c) the remedial approach to be implemented; and/or (d) the duration of operation, maintenance, and monitoring activities. Despite the lack of such information, cost‐to‐closure estimates are nevertheless routinely needed and generated for internal assessments or audits, regulatory disclosures, property acquisitions, insurance claims, litigation, and other business transactions. Cost estimates are also often needed in bankruptcy proceedings where the trier of fact must estimate the total future costs associated with an environmental legacy portfolio to determine the overall value (or solvency in the case of evaluating the potential bankruptcy) of a company. This article presents a solution for developing cleanup costs for single sites or a portfolio of sites using a comprehensive, three‐tiered method that is effective over a wide range of site information. Real‐world examples of the successful application of this method are then provided, based on detailed environmental analyses that were completed for a recent bankruptcy proceeding and a case in which an estimated cleanup cost was needed in a legal proceeding. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
Polycyclic aromatic hydrocarbons (PAHs) and metal(loid) mass flux estimates and forensic assessment using PAH diagnostic ratios were used to inform remediation decision making at the Sydney Tar Ponds (STPs) and Coke Ovens cleanup project in eastern Canada. Environmental effects monitoring of surface marine sediments in Sydney Harbor indicated significantly higher PAH concentrations during the first year of remediation monitoring compared to baseline. This was equivalent to PAH loadings of ~2,000 kg over a 15‐month period. Increases in sediment PAH concentrations raised serious concerns for regulators, who requested cessation of remediation activities early in the $400 M (CAD) project. Historically, the STPs were reported as the primary source of PAH contamination in Sydney Harbor with estimated discharges of 300 to 800 kg/year between 1989 and 2001. Mass flux estimates of PAHs and metal(loid)s and PAH diagnostic ratios were used to evaluate if increases in PAH concentrations in marine sediments were the result of the STPs remediation activities. PAH mass flux estimates approximated that 17 to 97 kg/year were discharged from the STPs during three years of remediation and were corroborated by an independent PAH flux estimate of 119 kg in year 1. PAH fluxes to the Sydney Harbor were mostly surface water derived, with groundwater contributing negligible quantities (0.002–0.005 kg/year). Fluxes of metal(loid)s to harbor sediments were stable or declining across all years and were mirrored in sediment metal(loid) concentrations, which lacked temporal variation, unlike total PAH concentrations. Flux results were also corroborated using PAH diagnostic ratios, which found a common source of PAHs. Coal combustion was likely the principal source of PAHs and not migration from the STPs during remediation. Although short‐term residual sediment PAH increases during onset of remediation raised concerns for regulators, calls for premature cessation of remediation early in the project were unwarranted based on only one year of monitoring data. Mass flux estimates and forensic assessments using PAH diagnostic ratios proved useful tools to inform remediation decision making that helped environmental protection and reduced costs associated with lost cleanup time.  相似文献   

12.
Thermal remediation of contaminated soils and groundwater by injection of hot air and steam using large‐diameter auger in situ soil mixing effectively remediates volatile and semivolatile organic compounds. This technology removes large amounts of contamination during the early treatment stages, but extended treatment times are needed to achieve high removal percentages. Combining thermal treatment with another technology that can be injected and mixed into the soil, and that continues to operate after removal of the drilling equipment, improves removal efficiency, and reduces cost. Using field‐determined pseudo first‐order removal rates, the cost of the combined remediation of chlorinated volatile organic compounds (CVOCs) by thermal treatment followed by reductive dechlorination by iron powder has been estimated as 57 percent of the cost of thermal treatment alone. This analysis was applied to a case‐study remediation of 48,455 cubic yards, which confirmed the cost estimate of the combined approach and showed over 99.8 percent removal of trichloroethene and other chlorinated VOCs. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
The traditional approach to characterizing the extent of groundwater contamination is often phased over a period of several years. A screening method has been developed that allows the investigation process to be reduced to a single phase. Existing data are used to develop a preliminary estimate of the extent of contamination, which is refined by the screening method using groundwater data collected and analyzed in the field. The screening method is applicable at sites with volatile organic compound contamination. Groundwater samples are collected using direct push or drill rig assisted methods, and the groundwater headspace gas is analyzed for the contaminant of interest. The refined estimate is used to locate all of the groundwater monitoring wells necessary to finalize the estimate of the extent of contamination. Therefore, only one investigation phase is required, and time and cost savings are realized with respect to the traditional multiphase approach. The screening method was successfully applied at a CERCLA site in Nebraska with two distinct plumes of TCE-contaminated groundwater. The Nebraska remedial investigation was completed approximately 18 months earlier than the estimated completion of a comparable phased investigation, with a corresponding cost reduction estimated at approximately 10 percent. If data from the screening method were used instead of data from monitoring wells, the estimated cost savings would be over 50 percent. Additional applications and evaluations may lead to industry and regulatory acceptance of the method as a primary characterization tool.  相似文献   

14.
In areas of the country where the U.S. Department of Energy has classified the available wind resources as Class 3 or greater, the use of wind turbines to provide power to relatively small remediation systems such as groundwater circulation wells may be technically and economically feasible. Groundwater circulation wells are a good candidate technology to couple with renewable energy, because the remediation system removes contamination from the subject aquifer with no net loss of the groundwater resource, while the wind turbine does not create potentially harmful air emissions. Wind data collected in the vicinity of the former Nebraska Ordnance Plant Superfund site were used to select a wind turbine system to provide a portion of the energy necessary to power a groundwater circulation well located in an area of high trichloroethylene groundwater contamination. Because utility power was already installed at the remediation system, a 10 kW grid inter‐tie wind turbine system supplements the utility system without requiring batteries for energy storage. The historical data from the site indicate that the quantity of energy purchased correlates poorly with the quantity of groundwater treated. Preliminary data from the wind turbine system indicate that the wind turbine provides more energy than the remediation system treatment components and the well submersible pump require on a monthly average. The preliminary results indicate that the coupling of wind turbines and groundwater circulation wells may be an attractive alternative in terms of the system operation time, cost savings, and contaminant mass removal. © 2004 Wiley Periodicals, Inc.  相似文献   

15.
The MicroBlower Sustainable Soil Vapor Extraction System is a cost‐effective device specifically designed for remediation of organic compounds in the vadose zone. The system is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction to natural attenuation. It can also be a better choice for remediating small source zones that are often found in “tight zones” that are controlled by diffusion rate. The MicroBlower was developed by the Savannah River National Laboratory at the US Department of Energy's Savannah River Site to address residual volatile organic compound (VOC) contamination after shutdown of active soil vapor extraction systems. In addition, the system has been deployed to control recalcitrant sources that are controlled by diffusion rates. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Environmental contamination with ionic chromium has been identified as a problem at numerous Superfund and RCRA Corrective Action sites. In many cases, contamination of groundwater to levels above existing standards or criteria may be a potential problem both for direct consumption of groundwater and for transport of mobile forms of chromium to areas such as basements where it can becontacted. In the environment, chromium occurs in two forms: trivalent and hexavalent. The trivalent form is generally immobile and nontoxic; hexavalent chromium is generally mobile and toxic. This article first presents the extent of the chromium problem, reviews the environmental chemistry literature on chromium, and reviews existing treatment technology for chromium immobilization in the nontoxic trivalent state. Finally, we present a case study where immobilization of chromium occurred through natural processes allowing a modified no-action scenario for site remediation.  相似文献   

17.
Leaking underground storage tank systems at service stations have resulted in tens of thousands of petroleum releases and associated groundwater chemical plumes often extending hundreds of feet off‐site. Technical and engineering approaches to assess and clean up releases from underground tanks, product lines, and dispensers using technologies such as soil vapor extraction, air sparging, biostimulation, and monitored natural attenuation are well understood and widely published throughout the literature. This article summarizes life‐cycle environmental response costs typically encountered using site‐specific cost estimation or metric‐based cost categories considering the overall complexity of site conditions: (1) simple sites where response actions require smaller scale assessments and/or remediation and have limited or no off‐site impacts; (2) average sites where response actions require larger scale assessments and/or remediation typical of petroleum releases; (3) complex sites where response actions require greater on‐site and/or off‐site remediation efforts; and (4) mega sites where petroleum plumes have impacted public or private water supplies or where petroleum vapors have migrated into occupied buildings. Associated cleanup cost estimates rely upon appropriate combinations of individual work elements and the duration of operation, maintenance, and monitoring activities. These cost estimates can be offset by state reimbursement funds, coverage in purchase agreements, and insurance policies. A case study involving a large service station site portfolio illustrates the range of site complexity and life‐cycle environmental response costs. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Adaptive sampling and analysis programs (ASAPs) provide a cost-effective alternative to traditional sampling program designs. ASAPs are based on field analytical methods for rapid sample turnaround and field-based decision support for guiding the progress of the sampling program. One common objective of ASAPs is to delineate contamination present in soils, either to support feasibility studies or remedial action designs. An ASAP based on portable gas chromatograph/ mass spectrograph (GC/MS) technologies developed at Tufts University combined with decision support tools created at Argonne National Laboratory was used to delineate explosives contamination in soils at Joliet Army Ammunition Plant, Joliet, Illinois. Tufts' GC/MS technologies provided contaminant-specific identification and quantification with rapid sample turnaround and high sample throughput. Argonne's decision support tools estimated contamination extent, determined the uncertainty associated with those estimates, and indicated where sampling should continue to minimize uncertainty. In the case of Joliet, per sample analytical costs were reduced by 75 percent as compared to the cost of off-site laboratory analyses for explosives. The use of an ASAP resulted in a much more accurate identification and delineation of contaminated areas than a traditional sampling program would have with the same number of samples collected on a regular grid. While targeting explosives contamination in soils at Joliet, the ASAP technologies used in this demonstration have much broader application.  相似文献   

19.
Ion exchange (IX) can be used to aid in the remediation of underground storage tank (UST) radioactive waste at the U.S. Department of Energy's Hanford site in the state of Washington. In particular, IX can be used to concentrate the radionuclides in liquid-based waste prior to immobilization for final disposal. Concentration of the radionuclides can significantly reduce the final immobilized high-level waste volume and consequent overall remediation cost. Organic and inorganic IX resins each have unique advantages and disadvantages regarding the remediation process. This study presents a comparison of the remediation cost for UST waste at Hanford for a phenol-formaldehyde type organic resin versus crystalline silico-titanate inorganic resin. It was determined that with optimum processing conditions such as waste blending and sludge washing, remediation with the inorganic resin would be less expensive than the organic resin. Assuming baseline remediation conditions, the use of inorganic rather than organic IX resin for UST remediation at Hanford can save approximately $383 million. A limited sensitivity analysis was performed as pan of this study and is reported in the following. © 1999 John Wiley & Sons, Inc.  相似文献   

20.
The long‐term management of environmental contamination will be a major activity at many sites in the foreseeable future. While human health issues often drive decisions about cleanup, restoration, and long‐term stewardship, ecological considerations are also major driving forces and are of paramount importance to the public. Incorporation of ecological considerations into decisions about environmental protection, both short term and long term, requires (1) understanding public perceptions of ecological values, including aesthetics and existence values, (2) understanding contamination issues within a context of the structure and functioning of ecosystems, (3) developing bioindicators of ecological health (including human), (4) developing indicators of ecosystem functioning, and (5) developing and implementing a biomonitoring plan before, during, and after remediation so that adverse effects can be ascertained before they become irreversible. Both remediation/restoration and long‐term stewardship goals must be informed by public policy mandates that include public participation and healthy human and ecological systems. This article examines these issues as they relate to cost‐effective, long‐term protection of human and ecological health on contaminated lands. © 2002 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号