首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site investigations at an oil and gas facility identified a highly acidic waste referred to as residual acid tar that resulted in the transport of dissolved nickel toward the point of compliance at concentrations that exceeded site environmental screening levels. Solidification/stabilization (S/S) via deep soil mixing was selected as the remedial approach and a mixture of ground granulated blast furnace slag cement and Portland cement was subjected to treatability testing to evaluate the reagent mix's ability to achieve treatment objectives. Results from the treatability test showed a cement mix dose of 21 percent was sufficient to raise the pH above the target of 6.0 and reduce dissolved nickel concentrations to below site screening levels in leachate from treated samples of residual acid tar and material impacted by residual acid tar. Cement mix doses of 21 percent or greater were sufficient to achieve target strengths in the unimpacted shallow overburden. However, none of the doses tested were able to achieve target strengths in the residual acid tar or peaty material impacted by the residual acid tar. Results showed soil strengths increased significantly when the pH in leachate from the treated samples approached 12, suggesting the presence of organic acids related to the peaty soils may interfere with the cement set. Recommendations from the study include additional treatability testing to evaluate pre‐treatment with hydrated lime to satisfy acid neutralization requirements prior to dosing with the cement mix. ©2016 Wiley Periodicals, Inc.  相似文献   

2.
Waste glass creates a serious environmental problem, mainly because of the inconsistency of the waste glass streams. The use of waste glass as a finely ground mineral additive (FGMA) in cement is a promising direction for recycling. Based on the method of mechano-chemical activation, a new group of ECO-cements was developed. In ECO-cement, relatively large amounts (up to 70%) of portland cement clinker can be replaced with waste glass. This report examines the effect of waste glass on the microstructure and strength of ECO-cement based materials. Scanning electron microscopy (SEM) investigations were used to observe the changes in the cement hydrates and interface between the cement matrix and waste glass particles. According to the research results, the developed ECO-cement with 50% of waste glass possessed compressive strength properties at a level similar to normal portland cement.  相似文献   

3.
A video imaging technique is described for the homogeneity assessment of wastes that have been treated by stabilisation/solidification (S/S). The method incorporates a fluorescent tracer into the S/S reagent. A test “waste” consisting of an artificial soil was stabilised/solidified with varying degrees of mixing using Portland cement as the S/S reagent. The tracer distribution was monitored with a video camera, and the cement distribution was determined by chemical analysis for calcium. Measurement of the homogeneity of the products by the video imaging technique gave results comparable to those obtained by the chemical analysis. The results warrant use of the video imaging technique in field applications since it is easier, cheaper and faster than traditional chemical methods.  相似文献   

4.
The former process for the cementation of transuranic (TRU) low-level wastes poses several technical problems. Specifically in the US a TRU waste-form has not yet passed the Waste Isolation Pilot Plant prohibition for free liquid. For this reason, treatment of the portland cement based waste-form with supercritical carbon dioxide (SCCO2) is shown to satisfy regulations. The effect of SCCO2 treatment by applying different CO2 pressure and temperature conditions (8.4 MPa<p<28 MPa, 35°C<T<62°C) on the leachability, phase constitution, and microstructure of surrogate-doped portland cement type I/II samples is presented. Leaching studies were performed using a synthetic groundwater leaching procedure. Changes in phase constitution of the major crystalline phases (Ca(OH)2, CaCO3) as well as the microstructure were measured by X-ray diffraction and scanning electron microscopy. SCCO2 treatment at 8.4 MPa and 35°C can be shown as the most promising conditions to satisfy the requirements of the Department of Transportation (DOT) and to enhance the natural aging reaction of cement paste by carbonation, combined with the lowest release rates of the surrogates 232Th, and 151/153Eu.  相似文献   

5.
The Muggah Creek estuary in Sydney, Nova Scotia, received liquid and solid wastes from a steel mill and its associated coke ovens for approximately 100 years. This resulted in pollution of soils and sediments with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), heavy metals, and other pollutants, including those in untreated domestic wastewaters. The Canadian federal and Nova Scotia provincial governments organized the Sydney Tar Ponds Agency (STPA) to develop a remediation approach for the Coke Ovens site soils and Sydney Tar Ponds sediments. The STPA developed a remediation approach for the Sydney Tar Ponds sediments, involving solidification/stabilization (S/S) through mixing cement and other materials into the sediments, and then capping them as a waste pile. High‐density polyethylene (HDPE) plastic sheeting vertical barriers are proposed to be used to divert groundwater and surface water from entering into the S/S‐treated sediments and to collect any water and associated pollutants released from the S/S‐treated sediments. The Coke Ovens site soils are proposed to be landfarmed to reduce some of the PAHs and other pollutants and then capped with a layer of soil. This remediation program is estimated to cost on the order of $400 million (CAN). This article presents a review of the significant potential problems with the STPA proposed remediation strategy of the Sydney Tar Ponds sediments and Coke Ovens site soils. © 2006 Wiley Periodicals, Inc.  相似文献   

6.
The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.  相似文献   

7.
The immobilization of MSWI-scrubber residues with soluble PO4(3-) was studied and compared to the immobilization using cement. The DIN 38414-S4 leaching protocol and pH dependent leaching were used to evaluate the leaching of Pb and Zn. Four different scrubber residues from MSW combustion (Pb concentration: 2.8-4.8 mg/g; Zn concentration: 3.0-12.3 mg/g) were mixed with water and cement or Na2HPO4 as source of soluble PO4(3-) at dosages of at least 0, 0.1, 0.2, 0.3 and 0.4 g per g residue. With cement as well as with PO4(3-) a reduction in Pb and Zn leaching was observed. With 0.4 g cement per g residue, the Pb leaching was reduced by a factor ranging from 70 to 100, but still exceeded the Pb landfill limit of 2 mg/l. With PO4(3-) the Pb leaching was reduced with a factor of 100-300 to below 2 mg/l. The Zn landfill limit (10 mg/l) was only exceeded by one untreated residue. Adding 0.2 g cement or 0.1 g PO4(3-) per g of that residue was enough to reduce leaching below 10 mg/l. However, when 0.6 g Na2HPO4 per g residue was added to a lime based scrubber residue, an increase in Zn leaching up to 12.5 mg/l was observed due to an increase in pH of up to 13.0. When using NaH2PO4 and H3PO4 no such increase in Zn leaching was observed. pH dependent leaching performed on one of the four residues showed that in the pH range of 2.5-6, Pb leaching was 100-50 times lower with Na2HPO4 treatment than with cement. In the pH range from 7-11, almost equal results were obtained for cement treated and Na2HPO4 treated residue. Above a pH of 12, Pb leaching was three times lower for the PO(4)(3-)-treated residue than for the cement treated residue. With soluble PO4(3-), Pb leaching below 2 mg/l could be attained at a dosage of 0.27 g PO4(3-)/g residue. With cement, Pb leaching was never below 2 mg/l.  相似文献   

8.
Properties of concrete containing scrap-tire rubber--an overview   总被引:40,自引:0,他引:40  
Solid waste management is one of the major environmental concerns in the United States. Over 5 billion tons of non-hazardous solid waste materials are generated in USA each year. Of these, more than 270 million scrap-tires (approximately 3.6 million tons) are generated each year. In addition to this, about 300 million scrap-tires have been stockpiled. Several studies have been carried out to reuse scrap-tires in a variety of rubber and plastic products, incineration for production of electricity, or as fuel for cement kilns, as well as in asphalt concrete. Studies show that workable rubberized concrete mixtures can be made with scrap-tire rubber. This paper presents an overview of some of the research published regarding the use of scrap-tires in portland cement concrete. The benefits of using magnesium oxychloride cement as a binder for rubberized concrete mixtures are also presented. The paper details the likely uses of rubberized concrete.  相似文献   

9.
The rise in discarded or unwanted medications (UMs) is becoming an issue of great concern, as it has the potential to harm the components of the environment where it is discarded: particularly air, water and soil. To combat this problem, many researchers have investigated the best approach for the collection and proper disposal of UMs. This paper intends to elaborate upon a safe solution for treating this waste, specifically through a process of solidification/stabilization (S/S) that involves mixing UMs with asphalt cement and asphalt concrete mixtures. Volumes of 5, 10, 15 and 20 % of a mixture of UMs were mixed with asphalt cement and the analyzed properties of the mixture of UMs–asphalt included: softening point, ductility, penetration, flash and fire points, specific gravity and rotational viscosity. Marshal stability, flow, air voids, unit weight, voids in mineral aggregate (VMA) and voids filled with binder (VFB) of asphalt concrete mixture were also investigated. Results showed that this approach of S/S is a promising method for dual achievements to solve an environmental problem and to use the waste for road construction.  相似文献   

10.
A field study using monoliths (lysimeters) of a sandy clay loam soil was conducted to assess the fate of mutagenic chemicals after refinery and wood preserving bottom sediment sludges were land treated. The Ames Salmonella/microsome assay1 was used to determine the direct (without metabolic activation, −S9) and indirect (with metabolic activation, + S9) mutagenicity of the wastes, unamended soil, waste amended soils, and leachate. Extracts having a mutagenic ratio (MR) (MR= No. colonies from sample extract/No. colonies from DMSO solvent control) of ⩾ 2 were considered positively mutagenic. Extracts of the wood preserving waste sludge without activation were non-mutagenic (MR < 2) but extracts with activation ( + S9) produced very strong indirect mutagenicity (MR = 7.9). After soil incorporation, the waste amended soil produced very strong direct (MR = 8.9) and indirect (MR = 11.9) mutagenicity by day 180 and remained mutagenic (MR = 5.7, −S9; MR = 3.95, + S9) through day 350. The amount of residue in leachate from the wood preserving waste amended lysimeters was significantly greater (P <0.05) than the unamended soil during the first 90 days after waste application, but was not different after 90 days. The leachate residue from wood preserving waste amended lysimeters in the 90–180-day period produced mutagenic responses both with (MR = 2.24 and 2.51) and without (MR = 2.29) activation. Polynuclear aromatic hydrocarbons were the main constituents identified in the leachate residues that produced a mutagenic response. Soil treatment of the refinery sludge reduced its weak indirect mutagenicity before soil incorporation (MR = 2) to non-mutagenic (MR = 1.4) immediately following soil treatment. The MR of the waste amended soil increased to 1.7 by day 180 but by day 350 decreased to a level equal to that observed at day 0 (MR = 1.4). Leachate from the refinery amended lysimeters had significantly greater (P < 0.05) amounts of organic residue than unamended lysimeters 180 to 350 days after waste application. The leachate from one refinery waste amended lysimeter (90–180 days after waste application) produced a mutagenic response (MR = 3.16). The refinery sludge was detoxified shortly after soil treatment, but the wood preserving sludge required > 350 days to detoxify in the soil environment. The possibility exists that mobile mutagenic chemicals may leach into underlying groundwater from the treatment zone of soils amended with refinery and wood preserving sludges.  相似文献   

11.
In the preceding paper detailed microstructural studies were presented of some fundamental aspects of the interactions of two organic compounds on a cement matrix. Organophilic clays are now attracting increasing attention as potential presolidification adsorbents to reduce adverse organic-cement interactions in solidification/stabilization (S/S) systems. This paper presents extensive microstructural studies of interactions between an organophilic clay, containing adsorbed organic wastes, and a cement matrix. Such interactions must be as fully understood as possible if the long-term integrity of the organophilic clay/cement mixes, in whatever formulation, is to be assured in S/S applications.A range of mixes was made up with the objective of characterizing the interaction of the organophilic clay with phenolic compounds and cement using microstructural methods. This approach was adopted in order to enable essential comparisons to be made between clay-containing and clay-free S/S mixes, using the same organics in both cases. Microstructural studies of organic-free cement/clay mixes showed that the presence of the clay caused an inhibition of the initial ettringite formation, up to seven days, but once ettringite had begun to form it increased to 140% of that in OPC paste at 28 days. Scanning electron microscopy (SEM) micrographs showed that the whole fracture surface was covered with a mat of needle shaped crystals approximately 1 μm in length. These results indicated that the incorporation of clay into the cement matrix may cause the strength reduction observed in macrostructural studies by altering the cement hydration reaction. Microstructural analysis of the solidified (post-adsorption) 3-chlorophenol showed that its detrimental effects on the cement hydration reaction were minimized, provided that the maximum adsorption capacity of the clay was not exceeded.  相似文献   

12.
Ordinary Portland Cement (OPC) is often used for the solidification/stabilization (S/S) of waste containing heavy metals and salts. These waste components will precipitate in the form of insoluble compounds on to unreacted cement clinker grains preventing further hydration. In this study the long term effects of the presence of contaminants in solidified waste is examined by numerically simulating cement hydration after precipitation of metal salts on the surface of cement grains. A cement hydration model was extended in order to describe pore water composition and the effects of cement grain coating. Calculations were made and the strength development predicted by the model was found to agree qualitatively with experimental results found in literature. The complete model is useful in predicting the strength and leaching resistance of solidified products and developing solidification recipes based on cement.  相似文献   

13.
The major deficiencies in cement-based stabilization/solidification (S/S) processes are their inability to treat inorganic wastes contaminated with organic material or organic wastes. In general, organic compounds are poorly retained in a cement matrix and frequently have a detrimental, poorly understood, effect upon cement hydration and strength development. These interactions need to be understood as fully as possible, however, if S/S processes are to be developed in ways which will assure the long-term integrity of the resultant products.The work presented in this paper investigates some fundamental aspects of the interactions of two organic compounds, 3-chlorophenol and chloronaphthalene, with a cement matrix. Phenolic compounds have previously been shown to have a detrimental effect upon the macrostructural properties of ordinary Portland cement (OPC), for example, the strength, setting rate and leachability (Montgomery et al. 1988). Microstructural studies in this work have shown that 3-chlorophenol inhibits the hydration of tricalcium silicate (C3S in cement chemists' notation), with up to 90% of the C3S remaining after 28 days for highly dosed 3-chlorophenol/OPC samples. The formation of ettringite was found to be increased by the presence of 3-chlorophenol and its conversion to monosulphate inhibited. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) analysis of the samples showed that 3-chlorophenol crystallized in the cement matrix to form discrete crystals containing calcium and phenol. In contrast, chloronaphthalene had no observable effect on hydration reactions. In a subsequent paper, detailed studies will be presented showing how these deleterious effects can be minimized by the use of organophilic clays as a pre-solidification adsorbent.  相似文献   

14.
In previous studies, we focused on a mechanochemical process for recycling fly ash for use in cement; this process was expected to immobilize heavy metals in the fly ash, a desirable outcome in light of the fact that recycled fly ash is commonly used in the synthesis of inorganic materials. Here, we investigated the leaching of lead (Pb) from fly ash treated by a mechanochemical process and from cement prepared from the treated fly ash. We used lead oxide (PbO), a typical Pb compound in fly ash, as a model substance. Mechanochemical treatment of the fly ash inhibited Pb leaching by 93%, and further inhibition (more than 99.9%) was observed in cement produced from the treated fly ash. During the mechanochemical treatment, PbO was reduced to Pb by iron from the stainless-steel mill used for processing, and the lower solubility of Pb in water resulted in immobilization of the Pb.  相似文献   

15.
Stabilization/solidification (S/S) processes have been used as the final treatment step for hazardous wastes prior to land disposal. Fly ash is a by-product of coal-fired power generation; a significant proportion of this material is low-grade, reject material (rFA) that is unsuitable as a cement replacement due to its high carbon content and large particle size (>45 microm). Flue gas desulphurization (FGD) sludge is a by-product from the air pollution control systems used in coal-fired power plants. The objective of this work was to investigate the performance of S/S waste binder systems containing these two waste materials (rFA and FGD). Strength tests show that cement-based waste forms with rFA and FGD replacement were suitable for disposal in landfills. The addition of an appropriate quantity of Ca(OH)2 and FGD reduces the deleterious effect of heavy metals on strength development. Results of TCLP testing and the progressive TCLP test show that cement-rFA-Ca(OH)2 systems with a range of FGD additions can form an effective S/S binder. The Leachability Index indicates that cement-based waste forms with rFA replacement were effective in reducing the mobility of heavy metals.  相似文献   

16.
In June 1992, SoilTech ATP Systems, Inc., completed the soil treatment phase of the Waukegan Harbor Superfund Project in Waukegan, Illinois, after approximately five months of operation. SoilTech successfully treated 12,700 tons of sediment contaminated with polychlorinated hiphenyls (PCBs) using a transportable SoilTech anaerobic thermal processor (ATP) system nominally rated at ten tons per hour throughput capacity. The SoilTech ATP technology anaerobically desorbs contaminants such as PCBs from solids and sludges at temperatures over 1,000° F. Principal products of the process are clean, treated solids and an oil condensate containing the hydrocarbon contaminants. At the Waukegan Harbor Superfund site, PCB concentrations in the sediments excavated and dredged from a ditch, lagoon, and harbor slip averaged 10,400 parts per million (ppm) (1.04 percent) and were as high as 23,000 ppm (2.3 percent). Treated soil was backfilled in an on-site containment cell. The removal efficiency of PCBs from the soil averaged 99.98 percent, relative to the project performance specification of 97 percent, and treated soil PCB concentrations were measured below 2 ppm. Approximately 30,000 gallons of PCB oil, desorbed from the feed material, were returned to the owner for subsequent off-site disposal. After modifications to the emissions control equipment, compliance with the 99.9999 percent destruction and removal efficiency (DRE) for PCBs in stack emissions required by the U.S. Environmental Protection Agency was achieved.  相似文献   

17.
The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production.Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes.Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m3 of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation.  相似文献   

18.
This article discusses the use of solidification/stabilization (S/S) to treat soils contaminated with organic and inorganic chemicals at wood preserving sites. Solidification is defined for this article as making a material into a freestanding solid. Stabilization is defined as making the contaminants of concern nonmobile as determined from a leaching test. S/S then combines both properties. For more information on S/S in general the reader should refer to other publications (Connors, J.R. [1990]). Chemical fixation and solidification of hazardous wastes. New York: Van Nostrand Reinhold; US Environmental Protection Agency. [1993a]. Engineering bulletin solidification/stabilization of organics and inorganics (EPA/540/S‐92/015); Wiles, C.C. [1989]. Solidification and stabilization technology. In H.M. Freeman [Ed.], Standard handbook of hazardous waste treatment and disposal. New York: McGraw Hill) as this article addresses only wood preserving sites and assumes basic knowledge of S/S processes. For a more general discussion of wood preserving sites and some other remedial options, the reader may wish to refer to a previous EPA publication (US Environmental Protection Agency. [1992a]. Contaminants and remedial options at wood preserving sites [EPA/600/R‐92/182]). This article includes data from the successful remediation of a site with mixed organic/inorganic contaminants, remediation of a site with organic contaminants, and detailed treatability study results from four sites for which successful formulations were developed. Included are pre‐ and post‐treatment soil characterization data, site vaines. ileizdot‐ names (in some cases), treatment formulas used (generic aridproprietary), costs, recommendations, and citatioiis to inore detailed refer‐ en ces. The data presen ted iiidica te that dioxins, pentachlorophepi 01 (PCP), creosote, polycyclic aromatic hydrocarbom (PAHsI, and metals can be treated at moderate cost by the use of S/S techuologp.  相似文献   

19.
The performance of ordinary and organophilic clays in the solidification and stabilization process was investigated with respect to the unconfined compressive strength (UCS) and leaching of phenol‐contaminated soil. The samples contained 2,000 mg/kg of phenol. White cement (15 and 30 percent by weight [wt%]) was used as binder, while ordinary and organophilic clays (8, 15, and 30 wt%) were applied as additives for reducing the harmful effects of phenol interference in cement hydration with a 28‐day curing time. The results revealed that the UCS is reduced by increasing the amount of clays. The values of UCS of all samples met the minimum standards specified for disposal in sanitary landfills determined by developed countries. The leaching test demonstrated that the degree of leaching diminished with increased clay content in all samples of both clay types. This reduction was observed to be greater in samples containing organophilic clay than in bentonite clay samples. Furthermore, the best composition of the materials tested was determined to be 30 wt% white cement plus 13.3 wt% organophilic clay with a compressive strength of 3,839 kPa, phenol removal percentage of 80 percent, and a cost of $67 per ton of contaminated soil.  相似文献   

20.
The self-sealing/self-healing (SS/SH) barrier concept is based on the principle that two or more parent materials placed in vertical or horizontal layers will react at their interfaces to form insoluble reaction products. These products constitute a seamless impermeable seal, which is resistant to the transmission of leachate and contaminants. A SS/SH liner formulation was developed in the laboratory and demonstrated at the Sudokwon landfill site in South Korea. Laboratory testing results indicated that a seal with a hydraulic conductivity less than 10(-9) m/s formed after two to four weeks of curing at room temperature, and the seal healed itself after it was fractured. The use of the soil from the Sudokwon landfill site instead of sand as the matrix of the parent materials in the SS/SH liner retarded the sealing and healing of the seal, but did not show an obvious effect on the overall sealing and healing capacity of the seal at early stages. The construction and installation of the field demonstration SS/SH liner were carried out in the same way as for a soil cement liner. The quality of the liner was ensured by the enforcement of quality analysis/quality control procedures during installation. A single sealed ring infiltration test was performed on the field demonstration liner 36 days after the installation was completed. The measurement of water infiltration rate indicated that the liner healed after it was fractured. However, the long-term sealing and healing capacity needs to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号