首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcoleus chthonoplastes and Phormidium corium were isolated from microbial mats covering all sediments along the Arabian Gulf coasts. These isolates could consume and oxidise n-alkanes. The establishment of axenic cultures faced the problem that with progressive axenity the cyanobacterial growth seemed to cease. The associated organotrophic bacteria, Rhodococcus rhodochrous, Arthrobacter nicotianae, Pseudomonas sp. and Bacillus sp., could utilize n-alkanes. The total number of these organotrophs was about 2×106 cells g−1 fresh culture, and R. rhodochrous was the most dominant. In order to test the potential of cyanobacteria for n-alkane consumption, experiments were constructed to rule out the role of the associated organotrophic bacteria. Aliquots, 0.5 g fresh cyanobacterial samples, each containing about 1×106 organotrophic bacterial cells (≡0.001 mg fresh bacteria) were incubated in inorganic medium aliquots supplied with an n-alkane. The same was repeated using 1.0×106 cells each of the four organotrophic bacteria instead of the cyanobacterial samples. The nonaxenic cyanobacterial samples consumed up to 60% of the available alkane, whereas no detectable consumption was measured in any of the pure organotrophic bacterial cultures. For all organotrophic bacteria, the numbers had to be increased ten-thousand times in order that detectable alkane consumption might become measurable. The fatty acids resulting from the n-alkane oxidation were found incorporated in cell lipid classes characteristic of cyanobacteria, namely in galactolipids and sulfolipids. These results may imply that the two test cyanobacteria contribute directly to n- alkane uptake and oxidation. Received: 6 May 1997 / Accepted: 2 October 1997  相似文献   

2.
ABSTRACT

The aim of this study was to assess the consequences of human impact on the characteristics of sediments heavy metal concentration, grain size and its influence on the structure of the microbial and meiofaunal community assemblages. A survey was carried out in July 2013 within six sites located in the Bizerte Lagoon (Tunisia), both downstream and upstream of industrial effluents. The highest total sediment metal concentrations were detected in stations located close to the industrial sewage discharge points. In these stations, the lowest densities of the total meiofauna (33?±?13?ind/10?cm?2) and conversely the highest densities of cultivable bacteria that are heavy metal resistant have been reported (16?±?80.34?CFU?g?1). Univariate (ANOVA) and multivariate (MDS/CCA) analyses demonstrate high dissimilarity (0.06) in meiofaunal and bacterial community structures between downstream and upstream industrial sewages. Furthermore, canonical correspondence analysis CCA results indicated that heavy metal sediment contamination promoted bacteria that are resistant to heavy metals, while heterotrophic bacteria supported the development of meiofauna taxa. The results highlight the importance of bacteria/meiofauna interactions, as both meiofaunal and microbial communities give indications of the ecological impact of heavy metal contamination in sediment.  相似文献   

3.
Soil respiration is one of the main CO2 sources from terrestrial ecosystems. Soil respiration is therefore a major source of greenhouse gas. Knowledge of the impact of agronomic practices such as manuring on the stability, for example resistance and resilience, of heterotrophic C–CO2 respiration to disturbance is scarce. Here, we studied the stability of soil microbial heterotrophic respiration of two tropical soils from plots annually enriched or not with manure applications during more than 20 years. Stability was quantified after heating soils artificially. We hypothesized that field manuring would change the stability of the microbial community. Additionally, the impact of both manured and unmanured soils to addition of an organic cocktail was assessed under controlled conditions in order to discriminate the metabolic capacity of the microbial community, and to link the metabolic capacity up with the microbial heterotrophic soil respiration. Our results show that total respiration was not significantly different in manured and unmanured pots. Moreover, contrary to our hypothesis, manure amendment did not affect the stability (resistance, resilience) of the microbial abundance or the basal metabolism, in our experimental conditions. By contrast, the diversity of the bacterial community in heated soils was different from that in unheated soils. After heating, surviving microorganisms showed different carbon utilization efficiency, manuring stimulating the growth of different resistant communities, that is, r-strategist or K-strategist. Microbial community of manured soils developed in the presence of the organic cocktail was less resistant to heating than microbial community of unmanured plots.  相似文献   

4.
Mesozooplankton provide oxic and anoxic microhabitats for associated bacteria, whose carbon substrate usage activities complement those of the ambient bacteria. The metabolic profiles of bacterial communities associated with the calanoid copepod Acartia tonsa under aerobic and anaerobic conditions were examined in comparison with phytoplankton-associated bacteria. Carbon substrate usage by phytoplankton-associated bacteria was significantly different than that of copepod-associated bacteria in both aerobic and anaerobic conditions. Substrate utilization by copepod-associated bacteria was more dependent upon oxygen condition than whether the bacteria were located on the copepod exoskeleton or within the gut. Results suggest that gut bacteria were responsible for a large portion of anaerobic substrate usage by copepod-associated bacteria. The metabolic profiles of bacteria associated with six common zooplankton groups and free-living bacteria collected in July 2012 from the York River estuary, Virginia, (37°14′50.36″N, 76°29′58.03W) were also compared, and there were significant differences in their substrate utilization patterns between aerobic and anaerobic incubations, and among the different zooplankton groups. Through trophic interactions, phytoplankton-associated or free-living bacteria may be introduced to the anoxic zooplankton gut and its associated bacterial community. Inclusion of these anaerobic microenvironments and their microbial inhabitants increased the total number of substrates used by 57 % over what was used by aerobic phytoplankton-associated bacteria alone, and by 50 % over what was used by aerobic free-living bacteria in the York River. Therefore, the presence of zooplankton-associated microhabitats and their bacteria expanded the functionality of aquatic microbial communities and led to a more comprehensive substrate usage.  相似文献   

5.
Four procedures were compared for the extraction of lipopolysaccharide (LPS) from 10 laboratory strains of cyanobacteria. LPS yields as a percentage of cyanobacterial dry weight ranged from 0.03 to 6.13. The heterotrophic bacterial LPS marker 2-keto-3-deoxyoctonoic (KDO) acid was not detectable in any of the cyanobacterial LPS preparations. All methods yielded LPS that contained biologically- and toxicologically-significant quantities of the cyanotoxin microcystin, when applied to some, but not all, microcystin-producing cyanobacterial strains. Of the four methods used, a procedure including Proteinase K, plus RNase and DNase, performed best overall on the basis of minimum time required, higher percentage yields of LPS, and minimal co-extraction of microcystin.  相似文献   

6.
广州市典型中小型水库营养状态与蓝藻种群特征   总被引:5,自引:0,他引:5  
江启明  侯伟  顾继光  彭亮  雷腊梅 《生态环境》2010,19(10):2461-2467
中小型水库是广州市供水的重要水源地和后备水源地,为了解这类水库的富营养化特征以及蓝藻种群的动态,于2010年的枯水期、丰水期对广州市6座典型的中小型水库进行了采样与分析。结果表明:梅州水库、芙蓉嶂水库为贫-中营养型,三坑水库、百花林水库、和龙水库为中-富营养型,洪秀全水库为富营养型,水库营养状态指数季节变化差异不显著。在同一座水库中,水力滞留时间越长,营养状态指数越高;在不同水库之间,营养状态指数与集雨区内人类活动影响有关。6座水库蓝藻生物量的季节变化明显,受水温和水体稳定性的影响,枯水期蓝藻生物量在0.14~171.8μg.L-1之间,占浮游植物总生物量的0.1%~10.0%;丰水期蓝藻生物量在0.013~32.8 mg.L-1之间,占浮游植物总生物量的6.5%~97.0%。不同营养状态的水库之间蓝藻的生物量和种类差异明显,受营养盐和水力滞留时间的影响,梅州水库、芙蓉嶂水库蓝藻生物量在0.1~16μg.L-1之间,主要种类为泽丝藻(Limnothrix redekei)、卷曲鱼腥藻(Anabaena pertuthate)、水华微囊藻(Microcystis flos-aquae)、粘球藻(Gloeocapsa sp.);三坑水库、百花林水库、和龙水库蓝藻生物量在0.057~32.8 mg.L-1之间,主要优势种为拟柱孢藻(Cylindrospermopsis raciborskii)、泽丝藻、假鱼腥藻(Pseudanabaena limnetica);洪秀全水库蓝藻生物量在0.107~2.637 mg.L-1之间,主要优势种为阿氏颤藻(Oscillatoria agardhii)、水华微囊藻、卷曲鱼腥藻。  相似文献   

7.
• Structure of multi-trophic microbial groups were analyzed using DNA metabarcoding. • Discontinuity and trophic interactions were observed along the dam-fragmented river. • C, N and P cycles are driven by top-down and bottom-up forces of microbial food web. • Pelagic-benthic coupling may intensify nutrient accumulation in the river system. Cascade dams disrupt the river continuum, altering hydrology, biodiversity and nutrient flux. Describing the diversity of multi-trophic microbiota and assessing microbial contributions to the ecosystem processes are prerequisites for the restoration of these aquatic systems. This study investigated the microbial food web structure along a cascade-dammed river, paying special attention to the multi-trophic relationships and the potential role of pelagic-benthic coupling in nutrient cycles. Our results revealed the discontinuity in bacterial and eukaryotic community composition, functional group proportion, as well as α-diversity due to fragmentation by damming. The high microbial dissimilarity along the river, with the total multi-trophic β-diversity was 0.84, was almost completely caused by species replacement. Synchronization among trophic levels suggests potential interactions of the pelagic and the benthic groups, of which the β-diversities were primarily influenced by geographic and environmental factors, respectively. Dam-induced environmental variations, especially hydrological and nutrient variables, potentially influence the microbial food web via both top-down and bottom-up forces. We proposed that the cycles of carbon, nitrogen and phosphorus are influenced by multi-trophic groups through autotrophic and heterotrophic processes, predator–prey relationships, as well as the release of nutrients mainly by microfauna. Our results advance the notion that pelagic-benthic trophic coupling may intensify the accumulation of organic carbon, ammonium and inorganic phosphorus, thereby changing the biogeochemical patterns along river systems. As a consequence, researchers should pay more attention to the multi-trophic studies when assessing the environmental impacts, and to provide the necessary guidance for the ecological conservation and restoration of the dam-regulated systems.  相似文献   

8.
In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH 4 + - N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH 4 + - N and organic matter were pH 7.5>pH 8.5>pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and comparison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.  相似文献   

9.
Cyanobacteria are freshwater microorganisms that can bloom and produce toxins that contaminate water. There is thus a need for methods to remove cyanobacteria, by flocculation for instance. Here, we prepared new flocculants by modifying waterwork sewage sludge. Flocculant (A) or (B) were prepared by treating 3 g of preprocessed sludge in hydrochloric acid and heating at 200 or 250 °C for 3.0 h. Flocculant (A) and (B) were used to remove Microcystis aeruginosa colonies by adding 0.75 mL of flocculant to 100 mL of algal culture and incubating for 8 h. Results show removal efficiencies of 72 and 91%, respectively. Total nitrogen was reduced by 30 and 12%. Total phosphorus was reduced by 75 and 76%. Chlorophyll fluorescence showed that cyanobacterial cells were removed without damaging the membrane integrity. Overall, findings show that modified waterworks sludge flocculants have good potential for the control of algal blooms, the removal of total nitrogen and total phosphorus and the restoration of aquatic ecosystems.  相似文献   

10.
采用PCR-RFLP技术研究了不同C/N比下亚硝酸盐氧化菌及异养菌混合体系的微牛物多样性,并探讨了微生物菌群结构与其功能(硝化件能)的关系.C/N=0时,混合体系主要由自养菌和寡营养菌(85.1%)组成,包括亚硝酸盐氧化菌(NOB)、拟杆菌门、α-变形菌纲、浮霉菌门和绿色非硫细菌中的一些菌株.C/N=0.44时,混合体系中的自养菌减少,异养菌(主要是γ-变形菌纲的成员)大量出现.C/N=8.82时,γ-变形菌纲的菌株尤其是反硝化菌Pseudomonas sp.占主导(93.8%),与此同时,随着C/N升高,该混合体系的硝化性能也由专一的亚硝酸盐氧化过程转变为同时硝化反硝化过程.微生物菌群结构的转变较好地解释了其硝化性能的改变.本研究揭示了微生物菌群结构与其功能的内在联系,同时表明PCR-RFLP技术与化学分析相结合是研究微生物菌群结构与功能的有力工具.图3表2参13  相似文献   

11.
The nitrogenase activity in the cyanobacterial mat of a laminated microbial ecosystem was investigated by the acetylene reduction method. Measurements under several conditions such as light and dark, aerobic and anaerobic and by inhibiting photosystem II by 10-5 M DCMU showed the nitrogenase activity to be light stimulated and to some degree inhibited by oxygen. An appreciable amount of activity was also present under complete aerobic conditions. We estimated 8 to 15 kg N fixed per hectare per year for that part of the intertidal flat supporting growth of cyanobacteria. By measuring a vertical sediment profile, nitrogenase was shown to be associated with the cyanobacterial mat. Diurnal measurements of nitrogenase showed two activity peaks, one at sunrise and one at sunset. Following population dynamics in the cyanobacterial mat showed Microcoleus sp., Oscillatoria spp., Spirulina sp., Gloeocapsa sp. and sometimes Merismopedia sp. to be present. During four years of observations we never found any heterocystous cyanobacteria. Non-heterocystous cyanobacteria apparently play an important role in nitrogen fixation in this marine intertidal environment.  相似文献   

12.
Temporal changes in abundance and biomass of picophytoplankton, heterotrophic pico-eukaryotes, and nanoplankton assemblages were investigated along a transect crossing the Adriatic Sea, from the Italian to the Croatian coast. This 15-months (June 1999-August 2000) investigation allowed comparing microbial parameters during summer 1999 (year without mucilage) and summer 2000 when a major mucilage event occurred. Pico- and nanoplankton assemblages displayed significant differences between the 2 summer periods. The main differences can be summarized as: (i) presence of cyanobacterial blooms (up to 108 cells l-1) in summer 2000, absent in summer 1999; (ii) an increasing fraction of heterotrophic pico-eukaryotes (up to 5.0 × 106 cells l-1) and heterotrophic nanoplankton (size 2-5 µm) during mucilage event; (iii) a reduced abundance of small-sized (2-3 µm) phototrophic nanoplankton in summer 2000. Changes in community structure were signals of changes in trophic condition of the system, which resulted in a competitive advantage for small sized pico- and nanoheterotrophs. Data presented here indicated that mucilage events are associated with changes in microbial community structure and functioning in ambient water and induced the amplification of 3-step microbial food chain. The potential use of the heterotrophic pico-eukaryotes for describing alterations of the trophic pathways during mucilage events is discussed.  相似文献   

13.
Water samples from the Kuwaiti coasts of the Arabian Gulf were used for counting and isolating bacteria capable of growth on low molecular weight organic compounds known to be released by picocyanobacteria. The compounds tested were potassium acetate, sodium pyruvate, fumaric acid, succinic acid, sodium citrate and glycerol. For comparison, the bacterial numbers on glucose (a conventional carbon source) and Tween 80 and crude oil (unconventional carbon sources), as sole sources of carbon and energy were also determined. Sodium pyruvate was, in most cases, the carbon and energy source most commonly utilized by the cultivable surface water bacteria. The most common cultivable bacterial genera on the test carbon sources were Pseudoalteromonas, Vibrio, Cobetia and Roseobacter. Less common genera were Rhodococcus, Pseudomonas and Bacillus. Quantification of heterotrophic bacteria associated with cultures of local picocyanobacterial strains, originally isolated from the Gulf surface water, also revealed that the carbon source most commonly utilized by cultivable bacteria was sodium pyruvate. However, a different bacterial composition was identified, with Alcanivorax, Stappia and Marinobacter as the major heterotrophic genera. All heterotrophic bacteria that grew on sodium pyruvate could also grow on β-alanine, as sole sources of carbon and energy. From this study we suggest that the Arabian Gulf bacteria utilizing picocyanobacterial low molecular weight compounds, particularly pyruvate may potentially contribute to the food web in this aquatic system. The experiments comply with the current laws of Kuwait.  相似文献   

14.
Metabolic relationships between symbiotic cyanobacteria and host sponge have been investigated in the marine species Chondrilla nucula and Petrosia ficiformis (collected in the Ligurian Sea in 1992). DNA, RNA, total protein, cytosolic protein, total sugar, cytosolic sugar, total lipid, nonprotein sulfhydryl groups, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were assayed in cortex-free sponge tissue, where cyanobacteria are all but absent. For both species, biochemical parameters were determined in specimens living in illuminated habitats and in dark caves, where sponges are virtually aposymbiotic for cyanobacteria. As C. nucula is unable to colonize dark sites, specimens of this species were artificially transferred to a cave and maintained in dark conditions for 6 mo. Results showed that in the absence of light (i.e., in the absence of cyanobacteria) C. nucula undergo metabolic collapse and thiol depletion. In contrast, P. ficiformis activates heterotrophic metabolism and mechanisms which balance the loss of cell reducing power. This suggests that cyanobacteria effectively participate in controlling the redox potential of the host cells by the transfer of reducing equivalents. Only P. ficiformis is capable of counteracting, by means of heterotrophic metabolism, the loss of the contribution from symbionts which is caused by dark conditions. This explains the differences in the ecological requirements of the two species. Because cyanobacterial symbionts release fixed carbon in the form of glycerol and other small organic phosphate (Wilkinson 1979), a model based on the glycerol 3-phosphate shuttle (typically occurring in chloroplasts and mitochondria) is suggested. The mechanism proposed appears to be an ancient biochemical adaptation which arose among ancestral symbiotic systems, and further developed in the relationships between endosymbiotic organelles and cytoplasm.  相似文献   

15.
Mesozooplankton group composition was examined in the Northeastern Aegean Sea (NEA) over a grid of 30 stations sampled during July 2004. The surface water layer influenced by the low salinity Black Sea waters (BSW) is considered in this paper. We attempted to study horizontal distribution patterns of major mesozooplankters within a more comprehensive framework, taking into account not only hydrology but also available, concurrently collected data on lower trophic levels (autotrophic and microbial heterotrophic communities). BSW was mainly restricted in the eastern part of the surveyed area where it was entrapped in a ca. 50-km wide anticyclone (the “Samothraki” gyre). High Chlα concentrations, autotrophic biomass as well as abundance and biomass of mesozooplankton were associated with the BSW, with the highest values recorded inside the gyre as well as at its coastal northern periphery and the lowest values towards the western and offshore part of the surveyed area characterized by high salinity waters of Levantine origin. Among mesozooplankters, cladocerans (mainly Penilia avirostris) showed a high abundance within the gyre in contrast to the very low abundance of copepods and appendicularians. Low salinity-high temperature gyre waters were characterized by the dominance of cyanobacteria of the genus Synechococcus in autotrophic biomass and the significant contribution of heterotrophic nanoflagellates in microbial heterotrophic biomass. Based on existing knowledge on ecophysiological traits and prey size-spectra selectivity, we discuss the observed distribution patterns of major mesozooplankton groups in terms of ambient abiotic parameters and the possible biological interactions among these groups as well as with lower or upper trophic levels.  相似文献   

16.
This study examined the response of a coral holobiont to thermal stress when the bacterial community was treated with antibiotics. Colonies of Pocillopora damicornis were exposed to broad and narrow-spectrum antibiotics targeting coral-associated α and γ-Proteobacteria. Corals were gradually heated from the control temperature of 26 to 31 °C, and measurements were made of host, zooxanthellar and microbial condition. Antibiotics artificially reduced the abundance and activity of bacteria, but had minimal effect on zooxanthellae photosynthetic efficiency or host tissue protein content. Heated corals without antibiotics showed significant declines in F V /F M , typical of thermal stress. However, heated corals treated with antibiotics showed severe tissue loss in addition to a decline in F V /F M . This study demonstrated that a disruption to the microbial consortium diminished the resilience of the holobiont. Corals exposed to antibiotics under control temperature did not bleach, suggesting that temperature may be an important factor influencing the activity, diversity and ecological function of the holobiont bacterial community.  相似文献   

17.
Interactions of nonylphenol (NP), a toxic and oestrogenic degradation product of widely used non-ionic surfactants, with the cyanobacterium Microcystis aeruginosa were studied. Batch cultures were incubated for 10 days with NP concentrations between 10 and 570 nM. NP was removed more quickly in the presence of M. aeruginosa (half-life 2.7–5.2 days) than in its absence (half-life 6.7–10.2 days) at all concentrations tested. At the end of the experiment, NP could not be found in the biomass, so the biotic removal is due to uptake and chemical transformation, and not to physical binding on the cells. The observed effective concentrations, EC50 and EC20, were 0.45 and 0.25 μ M, respectively. Therefore, NP is expected to have toxic effects on M. aeruginosa only in very contaminated surface waters. However, for concentrations that go far beyond environmental levels, cyanobacteria are able to cope with NP toxicity by internalising the compound in a less toxic form. Therefore, the presence of cyanobacteria may increase the rate of NP removal from the aquatic environment.  相似文献   

18.
Marine sponges can host a variety of cyanobacterial and bacterial symbionts, but it is often unclear whether these symbionts are generalists that occur in many host species or specialists that occur only in certain species or populations of sponges. The filamentous cyanobacterium Oscillatoria spongeliae is found in the sponges Dysidea n. sp. aff. herbacea 1A and 1B, and similar cyanobacteria are found in D. n. sp. aff. granulosa. We amplified and sequenced sponge nuclear ribosomal DNA (rDNA) and cyanobacterial 16S rDNA from specimens of these three sponges. We then used these sequences to construct phylogenies for host sponges and their symbiotic cyanobacteria. Each of these three sponge species hosts a distinct cyanobacterial clade, suggesting a high degree of host specificity and potential coevolution between symbiotic cyanobacteria and their host sponges.  相似文献   

19.
Cyanobacterial bloom events in South Taihu Lake cause serious water quality problems and disturb aesthetic view of lake’s environment. In this study, correlations between cyanobacterial blooms and hydro-meteorological factors, including water quality, temperature and precipitation were investigated. Results demonstrated that South Taihu Lake was heavily affected by cyanobacteria and the proliferation of cyanobacteria due to variations in hydro-meteorological factors and water quality conditions. Water quality parameters, including COD, NH3-N, TN and TP improved significantly since 2008 even at an elevated cyanobacterial bloom situation. Correlation analyses have shown that the development of cyanobacterial density and chlorophyll a concentration was sensitive to a wider temperature variation. The optimum temperature for cyanobacteria was 20°C, while extremely low and high temperatures were found to suppress their growth. Moreover, unusual rainfall patterns were measured during the study period (2003–2009), which showed an adverse impact on cyanobacterial development. Findings from this study suggested that seasonal lake’s water quality monitoring; suitable treatment of cyanobacterial blooms and strict policy implementation can solve the water quality issues in highly eutrophic lakes like Taihu.  相似文献   

20.
In-situ measurement of chemolithotrophic and some heterotrophic microbial activities were made in the immediate vicinity of actively discharging hydrothermal vents of the Galápagos Rift region at depths of 2 500 to 2 600 m. The CO2-assimilation or chemosynthesis productivity in the emitted vent waters, freshly mixed with oxygenated ambient seawater of 2°C, was minor compared to the bacterial biomass produced within the subsurface vent system prior to emission. Uptake of acetate and glucose indicated the presence of mixotrophic or facultatively chemolithotrophic bacteria in the emitted vent waters in agreement with isolations. Demonstration of ribulose bisphosphate carboxylase and phosphoenol pyruvate carboxylase in cultures of thiobacilli isolated from these vent water supports the notion that chemoautotrophic sulfur-oxidizing bacteria are one of the sources of primary production in the form of particulate organic carbon for filtering organisms in the deep sea hydrothermal environment. The rates of bacterial metabolic activities in emitted vent water are too low for the amount of invertebrate biomass and the rate of its growth and maintenance. Therefore, the larger portion of chemosynthetic sustenance of deep sea vent ecosystems appears to be based on symbiotic associations between bacteria and invertebrates and on surface attached bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号