首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding how vulnerable forest ecosystems are to climate change is a key requirement if sustainable forest management is to be achieved. Modelling the response of species in their regeneration niche to phenological and biophysical processes that are directly influenced by climate is one method for achieving this understanding. A model was developed to investigate species resilience and vulnerability to climate change within its fundamental-regeneration niche. The utility of the developed model, tree and climate assessment (TACA), was tested within the interior Douglas-fir ecosystem in south-central British Columbia. TACA modelled the current potential tree species composition of the ecosystem with high accuracy and modelled significant responses amongst tree species to climate change. The response of individual species suggests that the studied ecosystem could transition to a new ecosystem over the next 100 years. TACA showed that it can be an effective tool for identifying species resilience and vulnerability to changes in climate within the most sensitive stage of development, the regeneration phase. The TACA model was able to identify the degree of change in phenological and biophysical variables that control tree establishment, growth and persistence. The response to changes in one or more of these variables resulted in changes in the climatic suitability of the ecosystem for species and enabled a measure of vulnerability to be quantified. TACA could be useful to forest managers as a decision support tool for adaptation actions and by researchers interested in modelling stand dynamics under climate change.  相似文献   

2.
Phenological tracking enables positive species responses to climate change   总被引:1,自引:0,他引:1  
Earlier spring phenology observed in many plant species in recent decades provides compelling evidence that species are already responding to the rising global temperatures associated with anthropogenic climate change. There is great variability among species, however, in their phenological sensitivity to temperature. Species that do not phenologically "track" climate change may be at a disadvantage if their growth becomes limited by missed interactions with mutualists, or a shorter growing season relative to earlier-active competitors. Here, we set out to test the hypothesis that phenological sensitivity could be used to predict species performance in a warming climate, by synthesizing results across terrestrial warming experiments. We assembled data for 57 species across 24 studies where flowering or vegetative phenology was matched with a measure of species performance. Performance metrics included biomass, percent cover, number of flowers, or individual growth. We found that species that advanced their phenology with warming also increased their performance, whereas those that did not advance tended to decline in performance with warming. This indicates that species that cannot phenologically "track" climate may be at increased risk with future climate change, and it suggests that phenological monitoring may provide an important tool for setting future conservation priorities.  相似文献   

3.
Diamond SE  Frame AM  Martin RA  Buckley LB 《Ecology》2011,92(5):1005-1012
How do species' traits help identify which species will respond most strongly to future climate change? We examine the relationship between species' traits and phenology in a well-established model system for climate change, the U.K. Butterfly Monitoring Scheme (UKBMS). Most resident U.K. butterfly species have significantly advanced their dates of first appearance during the past 30 years. We show that species with narrower larval diet breadth and more advanced overwintering stages have experienced relatively greater advances in their date of first appearance. In addition, species with smaller range sizes have experienced greater phenological advancement. Our results demonstrate that species' traits can be important predictors of responses to climate change, and they suggest that further investigation of the mechanisms by which these traits influence phenology may aid in understanding species' responses to current and future climate change.  相似文献   

4.
To understand the consequences of human accelerated environmental change, it is important to document the effects on natural populations of an increasing frequency of extreme climatic events. In stream ecosystems, recent climate change has resulted in extreme variation in both thermal and hydrological regimes. From 2001 to 2004, a severe drought in western United States corresponded with earlier emergence of the adult stage of the high-altitude stream mayfly, Baetis bicaudatus. Using a long-term database from a western Colorado stream, the peak emergence date of this mayfly population was predicted by both the magnitude and date of peak stream flow, and by the mean daily water temperature, suggesting that Baetis may respond to declining stream flow or increasing water temperature as proximate cues for early metamorphosis. However, in a one-year survey of multiple streams from the same drainage basin, only water temperature predicted spatial variation in the onset of emergence of this mayfly. To decouple the effects of temperature and flow, we separately manipulated these factors in flow-through microcosms and measured the timing of B. bicaudatus metamorphosis to the adult stage. Mayflies emerged sooner in a warmed-water treatment than an ambient-water treatment; but reducing flow did not accelerate the onset of mayfly emergence. Nonetheless, using warming temperatures to cue metamorphosis enables mayflies to time their emergence during the descending limb of the hydrograph when oviposition sites (protruding rocks) are becoming available. We speculate that large-scale climate changes involving warming and stream drying could cause significant shifts in the timing of mayfly metamorphosis, thereby having negative effects on populations that play an important role in stream ecosystems.  相似文献   

5.
Hamann A  Wang T 《Ecology》2006,87(11):2773-2786
A new ecosystem-based climate envelope modeling approach was applied to assess potential climate change impacts on forest communities and tree species. Four orthogonal canonical discriminant functions were used to describe the realized climate space for British Columbia's ecosystems and to model portions of the realized niche space for tree species under current and predicted future climates. This conceptually simple model is capable of predicting species ranges at high spatial resolutions far beyond the study area, including outlying populations and southern range limits for many species. We analyzed how the realized climate space of current ecosystems changes in extent, elevation, and spatial distribution under climate change scenarios and evaluated the implications for potential tree species habitat. Tree species with their northern range limit in British Columbia gain potential habitat at a pace of at least 100 km per decade, common hardwoods appear to be generally unaffected by climate change, and some of the most important conifer species in British Columbia are expected to lose a large portion of their suitable habitat. The extent of spatial redistribution of realized climate space for ecosystems is considerable, with currently important sub-boreal and montane climate regions rapidly disappearing. Local predictions of changes to tree species frequencies were generated as a basis for systematic surveys of biological response to climate change.  相似文献   

6.
CLIMPAIR is a new phytoclimatic model, correlative and niche-based, which simultaneously assesses non-linear, non-statistical and dual measurements of proximity/potentiality of a site with respect to a number of climatic ranges of species, defined by convex hulls, within a suitability space. This set of phytoclimatic distances makes it possible to evaluate the degree to which each species is suitable for that site. Considering not only the number of species compatible (expected species richness), but also all those compatible covers presenting a high level of suitability evenness and finally applying an indicator derived from Shannon's classic entropy index to the set of standardized phytoclimatic coordinates in the suitability hyperspace, we can evaluate the phytoclimatic entropy which may be considered as a means of estimating the phytoclimatic versatility of the site. A site with high phytoclimatic entropy would promise versatile future behaviour, characterized by a wide range of possibilities of adaptation to climate change, and hence versatility can be used as an index of resilience and ability of a forest ecosystem to adapt to climate change. The model has been applied to peninsular Spain for 18 forest tree species and 12 climatic variables between the current mean climate (period 1951-1999) and a future climatic scenario (period 2040-2069). The results generally point to a significant decrease in the versatility of forest tree formations in the area studied, which is not homogeneous owing to a dual altitudinal/latitudinal decoupling. The decrease in versatility is greater in Mediterranean biogeographical areas than in Euro-Siberian ones, where in some cases it actually increases. In altitudinal terms, areas at elevations of less than 1500 m tend to become less versatile than areas situated at higher elevations, where versatility increases partly as a result of enrichment of alpine conifer forests with broadleaf species.  相似文献   

7.
Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate‐induced species’ movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species’ movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving‐window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species’ dispersal capabilities. We compared connectivity maps generated with our climate‐change‐informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present‐day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate.  相似文献   

8.
There has been considerable research on North–South issues on climate change; however, little work has been done on how the recent discovery of oil in some developing countries could affect North–South relations, the prospects for development for the South, climate change and local socio-environmental issues. Using the theory of inclusive development, the concept of the Right to Development, and their relation to stranded assets, this paper addresses the question: what does inclusive development imply at the national and global level in dealing with oil extraction in the context of climate change? Based on a literature review and a layered case study of Kenya, this paper concludes that (a) Kenyans argue that Kenya has a right to extract and use oil resources and that rich countries should reduce their extraction and use; (b) such a claim could be integrated in an appropriate emissions trading scheme; and that (c) Kenya should also account for the national and local socioecological aspects to reduce potential local conflict, yet the conditions favoring inclusive development are not yet established. However, such an argument may also lead to perverse results. If addressing climate change requires phasing out fossil fuels, this argument may lead to stranded assets in both developed and developing countries, and may ironically leave developing countries poorer off as stranded assets are possibly more expensive than having stranded resources.  相似文献   

9.
10.
黄河源区植被生长季NDVI时空特征及其对气候变化的响应   总被引:2,自引:0,他引:2  
徐浩杰  杨太保  曾彪 《生态环境》2012,(7):1205-1210
利用黄河源区MODIS/NDVI数据、1∶100万植被类型图和气象资料,分析了该区不同植被类型生长季NDVI时空特征以及与气候因子的关系。结果表明,1)2000—2011年,黄河源区植被生长呈改善趋势,生长季NDVI年际变化率每10 a为+2.75%,高寒草原、高寒草甸、高寒灌丛生长季NDVI年际变化率分别为每10 a+2.84%、+2.65%、+2.77%。2)黄河源区植被改善面积占全区总面积的29.39%,主要分布在卡日曲和玛曲上游、扎曲流域、布青山南麓、扎陵湖北部和鄂陵湖周边地区。植被退化面积仅占全区总面积的0.98%,主要分布在约古宗列曲东南部山地和卡日曲北部山地。受水热条件控制,植被改善表现为:①植被改善面积南坡大于北坡;②植被改善面积随海拔升高先增加后减小;③植被改善面积随坡度增加迅速减小。3)黄河源区植被生长季NDVI与同期气温和降水分别存在显著正相关性,其中高寒草原和高寒草甸生长受降水影响更为明显,而高寒灌丛生长受气温影响更为明显。气候的暖湿化趋势可能是促使黄河源区植被生长改善的主要原因。  相似文献   

11.

Food loss and waste is a major issue affecting food security, environmental pollution, producer profitability, consumer prices, and climate change. About 1.3 billion tons of food products are yearly lost globally, with China producing approximately 20 million tons of soybean dregs annually. Here, we review food and agricultural byproducts with emphasis on the strategies to convert this waste into valuable materials. Byproducts can be used for animal and plant nutrition, biogas production, food, extraction of oils and bioactive substances, and production of vinegar, wine, edible coatings and organic fertilizers. For instance, bioactive compounds represent approximately 8–20% of apple pomace, 5–17% of orange peel, 10–25% of grape seeds, 3–15% of pomegranate peel, and 2–13% of date palm seeds. Similarly, the pharmaceutical industry uses approximately 6.5% of the total output of gelatin derived from fish bones and animal skin. Animals fed with pomegranate peel and olive pomace improved the concentration of deoxyribonucleic acid and protein, the litter size, the milk yield, and nest characteristics. Biogas production amounts to 57.1% using soybean residue, 53.7% using papaya peel, and 49.1% using sugarcane bagasse.

  相似文献   

12.
Numerous studies have begun to tackle the social and cultural dimensions of perceiving and framing climate change. Scholars from geography and environmental psychology in particular have started to highlight the importance of so-called place-based approaches to studying regional and local framings of climate change. This paper stands in this tradition. It reports on findings derived from a nationwide survey of perceptions of and reactions to extreme weather events and interviews conducted with inhabitants of three islands in the coastal region of North Frisia (Germany). Coastal dwellers understand climate change through the lens of local and regional experiences of meteorological phenomena, seasonal changes, knowledge of the sea, and changes in local flora and fauna. Our detailed ecolinguistic analysis revealed six prevailing conceptual metaphors: Climate change is an enemy, preventing climate change is fight/war, climate change is punishment for human sins, climate change is overheating/heat, climate change is hot air/hoax and climate change is eco-dictatorship. These metaphors were used to make sense of climate change at the regional level and provide insights into place-based social and cultural conceptualisations of climate change. An understanding of these meanings should feed into developing more grounded climate change adaptation and mitigation strategies in coastal regions.  相似文献   

13.
This paper proposes an analytical toolkit to measure the sustainability of industrialization across countries. Drawing from a methodology developed to analyze economic development as a process of modernization, it ranks countries on the basis of the emissions they produce and their stage of development. The proposed index penalizes environmental pressures taking into account the modernization level of a country. The paper also proposes an assessment of the environmental performance of countries at the same level of modernization. It introduces the notion of policy space as the difference between the best and worst environmental performer at a given level of modernization. An important finding of the paper is that the magnitude of the policy space is not homogenous across different levels of income and environmental targets.  相似文献   

14.
Least-cost modeling for focal species is the most widely used method for designing conservation corridors and linkages. However, these linkages have been based on current species' distributions and land cover, both of which will change with large-scale climate change. One method to develop corridors that facilitate species' shifting distributions is to incorporate climate models into their design. But this approach is enormously complex and prone to error propagation. It also produces outputs at a grain size (km2) coarser than the grain at which conservation decisions are made. One way to avoid these problems is to design linkages for the continuity and interspersion of land facets, or recurring landscape units of relatively uniform topography and soils. This coarse-filter approach aims to conserve the arenas of biological activity rather than the temporary occupants of those arenas. In this paper, we demonstrate how land facets can be defined in a rule-based and adaptable way, and how they can be used for linkage design in the face of climate change. We used fuzzy c-means cluster analysis to define land facets with respect to four topographic variables (elevation, slope angle, solar insolation, and topographic position), and least-cost analysis to design linkages that include one corridor per land facet. To demonstrate the flexibility of our procedures, we designed linkages using land facets in three topographically diverse landscapes in Arizona, USA. Our procedures can use other variables, including soil variables, to define land facets. We advocate using land facets to complement, rather than replace, existing focal species approaches to linkage design. This approach can be used even in regions lacking land cover maps and is not affected by the bias and patchiness common in species occurrence data.  相似文献   

15.
植被物候是气候变化对生物圈产生长期或短期影响的重要指示因子。气候变化已经明显改变了许多物种的营养生长和繁殖物候,尤其是在温带地区。研究温带森林物候变化及其对全球变暖的响应,对认识森林物种共存,协同进化以及森林保护和经营等有重要意义。通过概述温带森林下物候研究的进展发现,光照和积温是影响木本植物展叶及繁殖物候的关键因素,林下层树木通过更早展叶,以尽量减少生长季林冠层遮阴对下层树木生长的影响,更早时期开花的树木具有从顶部向四周次第开花的时空格局,林冠层树种开花具有较好的同步性。而草本植物的物候通常受融雪时间和冠层动态的影响更大,并且,温带森林下不同生活史对策的草本植物的物候特征对气候变化的响应也不尽相同,存在明显的季节动态。繁殖物候、光照的季节变化、光合特征、授粉成功之间的联系决定了林下不同繁殖特性的草本植物的繁殖成功率。量化的、多指标、多对象的定位监测是精准物候研究的基础,物候变化的机理和建立可预测的物候模型将是未来研究的重点。  相似文献   

16.
17.
Environmental and Ecological Statistics - This paper evaluates behavioral adaptation models to climate change using South American agricultural data. This paper finds that the Ricardian model with...  相似文献   

18.
Species persistence in human‐altered landscapes can depend on factors operating at multiple spatial scales. To understand anthropogenic impacts on biodiversity, it is useful to examine relationships between species traits and their responses to land‐use change. A key knowledge gap concerns whether these relationships vary depending on the scale of response under consideration. We examined how local‐ and large‐scale habitat variables influence the occupancy dynamics of a bird community in cloud forest zones in the Colombian Chocó‐Andes. Using data collected across a continuum of forest and agriculture, we examined which traits best predict species responses to local variation in farmland and which traits best predict species responses to isolation from contiguous forest. Global range size was a strong predictor of species responses to agriculture at both scales; widespread species were less likely to decline as local habitat cover decreased and as distance from forest increased. Habitat specialization was a strong predictor of species responses only at the local scale. Open‐habitat species were particularly likely to increase as pasture increased, but they were relatively insensitive to variation in distance to forest. Foraging plasticity and flocking behavior were strong predictors of species responses to distance from forest, but not their responses to local habitat. Species with lower plasticity in foraging behaviors and obligate flock‐following species were more likely to decline as distance from contiguous forest increased. For species exhibiting these latter traits, persistence in tropical landscapes may depend on the protection of larger contiguous blocks of forest, rather than the integration of smaller‐scale woodland areas within farmland. Species listed as threatened or near threatened on the International Union for Conservation of Nature Red List were also more likely to decline in response to both local habitat quality and isolation from forest relative to least‐concern species, underlining the importance of contiguous forests for threatened taxa.  相似文献   

19.
The semiarid, northern Mongolian steppe, which still supports pastoral nomads who have used the steppe for millennia, has experienced an average 1.7 degrees C temperature rise over the past 40 years. Continuing climate change is likely to affect flowering phenology and flower numbers with potentially important consequences for plant community composition, ecosystem services, and herder livelihoods. Over the growing seasons of 2009 and 2010, we examined flowering responses to climate manipulation using open-top passive warming chambers (OTCs) at two locations on a south-facing slope: one on the moister, cooler lower slope and the other on the drier, warmer upper slope, where a watering treatment was added in a factorial design with warming. Canonical analysis of principal coordinates (CAP) revealed that OTCs reduced flower production and delayed peak flowering in graminoids as a whole but only affected forbs on the upper slope, where peak flowering was also delayed. OTCs affected flowering phenology in seven of eight species, which were examined individually, either by altering the time of peak flowering and/or the onset and/or cessation of flowering, as revealed by survival analysis. In 2010, which was the drier year, OTCs reduced flower production in two grasses but increased production in an annual forb found only on the upper slope. The particular effects of OTCs on phenology, and whether they caused an extension or contraction of the flowering season, differed among species, and often depended on year, or slope, or watering treatment; however, a relatively strong pattern emerged for 2010 when four species showed a contraction of the flowering season in OTCs. Watering increased flower production in two species in 2010, but slope location more often affected flowering phenology than did watering. Our results show the importance of taking landscape-scale variation into account in climate change studies and also contrasted with those of several studies set in cold, but wetter systems, where warming often causes greater or accelerated flower production. In cold, water-limited systems like the Mongolian steppe, warming may reduce flower numbers or the length of the flowering season by adding to water stress more than it relieves cold stress.  相似文献   

20.
A Finite Element Ecological Model for the Lagoon of Venice (VELFEEM) has been used to test the responses of the Lagoon of Venice ecosystem to variations in physical conditions.The model is obtained by coupling a finite element hydrodynamic model, that computes the velocity fields of water, an energetic model to compute the water temperature fields, and an ecological model that simulates the dynamic of phytoplankton, zooplankton, nutrients (ammonia, nitrate and phosphate) organic detritus (organic nitrogen, organic phosphorous and CBOD) and dissolved oxygen.The transport model is a two-dimensional barotropic finite element model which allows for a better resolution of the lagoon morphology.The ecological model has been developed by starting from the ecological module EUTRO of WASP (Water Analysis Simulation System released by US EPA), and by adapting it to the peculiarity of the Lagoon of Venice.A reference condition has been identified by running a 1-year simulation under climatologic condition. Then, the sensitivity to physical forcing (tide and wind) and to the input of macronutrients has been investigated, by comparing model predictions of spatial and temporal evolution of major state variables and of an aggregate index of Water Quality Trophic Index (TRIX).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号