首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of 226Ra in drinking water may sometimes make important contribution to natural background radiation exposures. The paper describes the study of 226Ra content in drinking water of Croatia: tap water from the public supply system of several major towns and bottled mineral water from two selected mineral water springs. 226Ra was determined by alpha-spectrometric measurement after radiochemical separation. The radiation doses originating from drinking tap water and bottled mineral water were estimated. The annual dose from consumption of bottled mineral water was compared to that received from ingestion of public system tap water. The study showed that 226Ra content for investigated categories of waters is below the levels at which any unacceptable dose due to ingestion would arise.  相似文献   

2.
This is a cross-sectional study of the incoming and distal outlet water quality from 41 dental units in Istanbul, carried out to compare the total microbial loads using traditional culture method versus epifluorescence microscopy. The possible presence of Legionella pneumophila using traditional culture method was also analyzed. One hundred and twenty three samples were taken from the high-speed handpiece lines, air-water syringe lines and source (incoming) water supplies from 41 dental units. The samples were assayed for live/dead bacteria, heterotrophic bacterial counts and presence of L. pneumophila bacteria. Thirty nine out of 41 dental units (91%) were not able to meet the standard limit of 200 CFU/ml in dental unit waters. The live bacterial counts were 1-1.5 orders of magnitude higher than aerobic mesophilic heterotrophic bacteria. L. pneumophila (serogroup 2-14) was isolated from five out of 41 units. Some dental units were using commercially bottled (19 l) drinking water as a source. The source water of eight dental unit was heavily contaminated which were fed up by commercially bottled drinking water.  相似文献   

3.
Water samples collected from public drinking water supplies in Sicily were analysed for electric conductivity and for their chloride, sulphate and nitrate contents. The samples were collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600 inhabitants. Chloride contents that ranged from 5.53 to 1,302 mg/l were correlated strongly with electric conductivity, a parameter used as a proxy for water salinity. The highest values are attributable to seawater contamination along the coasts of the island. High chloride and sulphate values attributable to evaporitic rock dissolution were found in the central part of Sicily. The nitrate concentrations ranged from 0.05 to 296 mg/l, with 31 samples (4.7% of the total) exceeding the maximum admissible concentration of 50 mg/l. Anomalous samples always came from areas of intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were also measured in bottled water sold in Sicily, and they all were within the ranges for public drinking water supplies. The calculated mean nitrate intake from consuming public water supplies (16.1 mg/l) did not differ significantly from that of bottled water (15.2 mg/l). Although the quality of public water supplies needs to be improved by eliminating those that do not comply with the current drinking water limits, at present it does not justify the high consumption of bottled water (at least for nitrate contents).  相似文献   

4.
An investigation has been carried out of molybdenum in drinking water from a selection of public supply sources and domestic taps across England and Wales. This was to assess concentrations in relation to the World Health Organization (WHO) health-based value for Mo in drinking water of 70 μg/l and the decision to remove the element from the list of formal guideline values. Samples of treated drinking water from 12 water supply works were monitored up to four times over an 18-month period, and 24 domestic taps were sampled from three of their supply areas. Significant (p?p?>?0.05) were detected. Tap water samples collected from three towns (North Wales, the English Midlands, and South East England) supplied uniquely by upland reservoir water, river water, and Chalk groundwater, respectively, also showed a remarkable uniformity in Mo concentrations at each location. Within each, the variability was very small between houses (old and new), between pre-flush and post-flush samples, and between the tap water and respective source water samples. The results indicate that water distribution pipework has a negligible effect on supplied tap water Mo concentrations. The findings contrast with those for Cu, Zn, Ni, Pb, and Cd, which showed significant differences (p?England and Wales.  相似文献   

5.
Hexavalent chromium (Cr(VI)) is an acknowledged hazardous material in drinking waters. As such, effective monitoring and assessment of the risks posed by Cr(VI) are important analytical objectives for both human health and environmental science. However, because of the lack of highly sensitive, rapid, and simple procedures, a relatively limited number of studies have been carried out in this field. Here we report a simple and sensitive analytical procedure of flow injection analysis (FIA) for sub-nanomolar Cr(VI) in drinking water samples with a liquid core waveguide capillary cell (LWCC). The procedure is based on a highly selective reaction between 1, 5-diphenylcarbazide and Cr(VI) under acidic conditions. The optimized experimental parameters included reagent concentrations, injection volume, length of mixing coil, and flow rate. Measurements at 540 nm, and a 650-nm reference wavelength, produced a 0.12-nM detection limit. Relative standard deviations for 1, 2, and 10 nM samples were 5.6, 3.6, and 0.72 % (n?=?9), and the analysis time was <2 min sample?1. The effects of salinity and interfering ions, especially Fe(III), were evaluated. Using the FIA-LWCC method, different sources of bottled waters and tap waters were examined. The Cr(VI) concentrations of the bottled waters ranged from the detection limit to ~20 nM, and tap waters collected from the same community supply had Cr(VI) concentration around 14 nM.  相似文献   

6.
To evaluate boron contamination of public drinking water in China, both dissolved and total boron contents in 98 public drinking water sources from 49 cities, 42 brands of bottled water samples from supermarkets in several cities, and 58 water samples from boron industrial area were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Our experimental results showed that boron existed in public drinking water sources mainly in dissolved status with total concentrations ranging from 0.003 to 0.337 mg/L (mean = 0.046 mg/L). The mean boron concentrations in mineral and pure bottled water were 0.052 and 0.028 mg/L, respectively. The results obtained in this work showed that there was no health risk on view of boron in public drinking water sources and bottled water. In boron industrial area, boron concentrations in surface water and ground water were 1.28 mg/L (range = 0.007–3.8 mg/L) and 18.3 mg/L (range = 0.015–140 mg/L), respectively, which indicated that boron industry caused boron pollution in local water system.  相似文献   

7.
Symptoms such as shortness of breath and cough have been noted in woodworking facilities even where wood dust itself is well-controlled. Suspicion has fallen on other possible contaminants in the workplace atmosphere, including bacterial endotoxin. A few studies have indicated potentially high endotoxin exposure with exposure to fresh wood in sawmills and in the production of fiberboard and chipboard, but fewer studies have been carried out on exposure to endotoxin in dry wood work, for example in joineries. A study of the endotoxin content of airborne wood dust samples from US woodworking facilities is presented, from the re-analysis of samples which previously had been taken to establish mass collection relationships between the IOM sampler, the closed-face 37 mm plastic cassette (CFC) sampler and the Button sampler. Endotoxin was strongly correlated with total dust, but the endotoxin content of a few fresh wood samples was found to be up to ten times higher per unit of wood dust than for dried-wood samples, and this difference was significant. No long-term time-weighted average sample exceeded the recommended limit value of 50 EU m(-3) (EU, endotoxin units)used in the Netherlands, although a number of the IOM samples came close (seven samples or 44% exceeded 20 EU m(-3)) and one short-term (48 minute) sample registered a high value of 73 EU m(-3). The geometric mean concentration from the IOM samples (11 EU m(-3)) is within the range of geometric means found from Australian joineries (3.7-60, combined: 24 EU m(-3)). In contrast, the corresponding values from the CFC (3.6 EU m(-3)), and the Button sampler (2.1 EU m(-3)) were much lower and no samples exceeded 20 EU m(-3). Endotoxin is likely only to be a significant problem in working with dried woods when associated with very high dust levels, where the wood dust itself is likely to be a cause for concern. The results from the few samples in this study where fresh wood was being worked were similar to results from other studies involving fresh woods. The agreement between these studies is encouraging given the difficulties of endotoxin analysis and the wide variation often expected between different laboratories.  相似文献   

8.
9.
Bisphenol A (BPA) is a commonly used monomer in various products including bottled water. Numerous studies have reported endocrine adverse effects and neoplasia associated with BPA exposure in animals. However, considerable discrepancies exist among these studies with respect to both the nature of the toxic effects and the threshold dose. In Lebanon, 19-L polycarbonate (PC) bottles of drinking water are widely used in urban areas. The present study aims at assessing BPA human exposure and associated health risks from drinking water in Lebanese. A total of 22 bottled water sources, packaged in PC, were identified from licensed and non-licensed sources. Water samples were analyzed following exposure to sunlight for 72 h. BPA in water was quantified by HPLC, and other potential organic pollutants were screened by GC/MS. Fifty-nine percent of samples showed BPA levels above detection limits (>0.05 ng/mL). The median BPA level was 0.1 ng/mL (range 0.05 to 1.37 ng/mL). The mean BPA level for the total number of samples was 0.169 ng/mL (±0.280). A higher mean BPA level was found in water from licensed companies compared to non-licensed sources, however, not statistically significant. Screening showed the presence of dibutyl-phthalate and dioctyl-phthalate in only two samples. Endocrine disruptors (EDR) are ubiquitous contaminants in bottled water in Lebanon with potential health risk implications. Although estimated exposure levels are below the reference dose (RfD), further studies are needed to quantitate exposure from various sources and to investigate EDR contribution to existing epidemics in the country.  相似文献   

10.
Four different potable water types: tap water, desalinated water in private plants, homes filtrated and sealed bottled water were collected from four provinces in Jordan and analyzed for various physiochemical parameters and trace metals content. The results showed that quality of potable water varied depending on many factors such as: water quality at source, types of purification system, and the storage methods. None of the analysed parameters exceeded the national and international guideline for potable water except Nickel (Ni). The maximum concentration of Ni was found in tap water which can be attributed as network distribution system and metal storage tanks influences. The highest levels of salinity was evident in tap water. Potable water produced at homes using different types of purification systems indicated lowest levels of salinity. Minor variations in physiochemical parameters and trace metal contents were found between local and imported bottled water brands.  相似文献   

11.
We analyzed the bacterial 16S rRNA gene diversity throughout the major components of the drinking water distribution system of a ca. 52,000-inhabitants city (Trikala City, Greece) in order to describe the changes of the bacterial assemblages and to detect possible bacterial pathogens which are not included in the standard monitoring process. Bacterial DAPI counts and DNA extraction was performed in the water pumping wells, the water treatment tank and tap water from households. Approximately 920 bp of the bacterial 16S rDNA were PCR-amplified, cloned, and sequenced for a total of 191 clones, which belonged to 112 unique phylotypes. The water of the pumping wells harbored a typical subsurface bacterial assemblage, with no human pathogens, dominated by β-Proteobacteria. Cell abundance in the water treatment tank decreased significantly, close to detection limit, but bacterial diversity remained high. However, the dominance of β-Proteobacteria decreased considerably, indicating the sensitivity of this group to drinking water disinfection treatment. Tap water from the households hosted a much less diverse, low-cell bacterial assemblage, dominated by Mycobacterium-like phylotypes, related to biofilm bacterial communities.  相似文献   

12.
This research evaluates the lifetime cancer risks from trihalomethanes in Tehran's drinking water. The Trihalomethanes were measured in seven different water districts. Sixty-three samples were taken from tap water across the city for 7 months. The samples were analyzed for trihalomethanes using US EPA method 524.2. The average concentration of total trihalomethanes in different districts were between 0.81 and 9.0 μg/L, and the highest concentrations were detected in district 2 at 19.5 μg/L. Total lifetime cancer risks assessment from exposure to trihalomethanes in drinking water (ingestion, inhalation, and skin routes) were performed for people living in different districts in Tehran. The lifetime cancer risk was 7.19 × 10(-5) in district 2 (a more affluent neighborhood) where mostly surface water sources is used to supply drinking water and 9.38 × 10(-6) in district 7 (a less affluent neighborhood) which is mainly supplied with well water sources. Based on the population data, the total expected lifetime cancer cases from exposure to trihalomethanes are 104, 108, 81, 81, 41, 27, and three for districts 1 through 7, respectively. The average lifetime cancer risk was 4.33 × 10(-5) which means a total of 606 lifetime cancer cases for the entire province of Tehran. The highest risk from THMs seems to be from the inhalation route followed by ingestion and dermal contacts.  相似文献   

13.
This paper presents a comparative assessment of public perception of drinking water quality in two underprivileged urban areas in Lebanon and Jordan with nearly similar cultural and demographic characteristics. It compares the quality of bottled water to the quality of the drinking water supplied through the public network and examines the economic implications of bottled water consumption in the two study areas. Participants' perception of the quality of drinking water provided via the public network was generally negative, and bottled water was perceived to be of better quality in both areas, thus affecting drinking water preferences and consumption patterns. The results reveal that the quality of bottled water is questionable in areas that lack enforcement of water quality standards, thus adding to the burden of an already disadvantaged community. Both areas demonstrated a considerable cost incurred for purchasing bottled water in low income communities reaching up to 26 % of total income.  相似文献   

14.
Quality assessment of various bottled waters marketed in Lebanon   总被引:1,自引:0,他引:1  
Thirty-two domestic bottled water brands were analyzed for various physico-chemical as well as bacterial water quality parameters. Recorded results were compared with the Lebanese Standards Institution standards of quality and standards of identity as well as various international water standards for bottled waters. Results showed a widespread in the characteristics of investigated bottled waters, yet the majority met the different bottled water standards for physico-chemical parameters except for pH (4 brands), hardness (2 brands), and calcium (2 brands). All samples showed negative growth for fecal coliforms, yet 18.8% (N = 6) and 59.4% (N = 19) of the samples revealed positive results for total coliforms and heterotrophic plate count at 37°C, respectively. Generated Piper diagrams revealed that the majority of investigated waters are of calcium?Cmagnesium bicarbonate type; some brands were rich in sodium?Cpotassium chloride, and few were of the mixed type. Comparison of the study results with reported label values indicated good agreement with stated pH values but considerable variation for dry residue, Mg, Na, K, Ca, Mg, HCO3, Cl, and SO4. Identification labels showed varying compliance with the Lebanese Standards Institution standards of identity.  相似文献   

15.
Fluoride Content in Drinking Water Supplies of Riyadh, Saudi Arabia   总被引:2,自引:0,他引:2  
Groundwater supplies about 34% ofthe total water demand for the capital city of SaudiArabia, Riyadh. The other 66% is desalinatedseawater. The fluoride level in Riyadh drinking watersupplies was evaluated. Samples were collected fromselected wells, treatment plants, desalinatedseawater, distribution network and 19 locally producedand imported bottled water. The fluoride level in theinfluent to the seven groundwater treatment plants andtheir final product water were in the range of 0.63–1.6 and 0.23–1.1 mg/L, respectively. Blending of theplants product water with the desalinated seawaterresulted in the fluoride level ranging from 0.01–0.5 mg/Lin the distribution network. Ninety percent of thesamples collected from the distribution network hadfluoride levels less than or equal to the calculatedweighted average value of 0.24 mg/L. The locallyproduced bottled waters as compared to 8 imported oneshave shown fluoride levels in the range of 0.2–0.83and 0.04–0.2 mg/L, respectively. In general, thefluoride level in Riyadh drinking water supplies isbelow the optimum recommended level of 0.7 to1.2 mg/L. It is therefore recommended thatfluoridation be considered in water treatment plants.  相似文献   

16.
石家庄市农村饮用水中氟化物健康风险评估   总被引:2,自引:1,他引:1  
利用中国疾病预防控制信息系统农村饮用水水质监测数据,对2010年18个项目县的水质监测结果进行分析,评估石家庄市农村饮用水氟化物对人群危害的风险。 石家庄市农村饮用水中氟化物浓度为0.01~0.98 mg/L,平原县和山区县饮用水氟化物浓度差异无显著性(t=-1.403,P>0.05),只有72份氟化物浓度超过0.5 mg/L,占9.7%。石家庄市农村患龋齿风险性较大,及时增加氟的摄入量非常必要。  相似文献   

17.
The ground water quality of District Nainital (Uttarakhand, India) has been assessed to see the suitability of ground water for drinking and irrigation applications. This is a two-part series paper and this paper examines the suitability of ground water including spring water for drinking purposes. Forty ground water samples (including 28 spring samples) were collected during pre- and post-monsoon seasons and analyzed for various water quality constituents. The hydrochemical and bacteriological data was analyzed with reference to BIS and WHO standards and their hydrochemical facies were determined. The concentration of total dissolved solids exceeds the desirable limit of 500 mg/L in about 10% of the samples, alkalinity values exceed the desirable limit of 200 mg/L in about 30% of the samples, and total hardness values exceed the desirable limit of 300 mg/L in 15% of the samples. However, no sample crosses the maximum permissible limit for TDS, alkalinity, hardness, calcium, magnesium, chloride, sulfate, nitrate, and fluoride. The concentration of chloride, sulfate, nitrate, and fluoride are well within the desirable limit at all the locations. The bacteriological analysis of the samples does not show any sign of bacterial contamination in hand pump and tube-well water samples. However, in the case of spring water samples, six samples exceed the permissible limit of ten coliforms per 100 ml of sample. It is recommended that water drawn from such sources should be properly disinfected before being used for drinking and other domestic applications. Among the metal ions, the concentration of iron and lead exceeds the permissible limit at one location whereas the concentration of nickel exceeds the permissible limit in 60 and 32.5% of the samples during pre- and post-monsoon seasons, respectively. The grouping of samples according to their hydrochemical facies indicates that majority of the samples fall in Ca–Mg–HCO3 hydrochemical facies.  相似文献   

18.
While antimony has been reported to migrate from PET bottles into contents, reports on bottled water and soft drinks usage and PET bottle reuse patterns are currently unavailable in the literature. Bottle use conditions and patterns are important determinants of antimony migration. In this work a survey assessing the pattern of bottle use and reuse in Britain and Nigeria was undertaken. The survey findings influenced the design of laboratory experiments that assessed the migration of antimony from PET bottles into water and soft drinks. Typical storage durations for bottled contents between purchase and opening for use were 7 days or less. However storage of up to one year was reported. Bottle reuse was high and similar for the two countries with reuse durations being higher in Nigeria. The antimony concentration in 32 PET bottle materials from Britain and Nigeria were similar and ranged between 177 and 310 mg kg(-1). For 47 freshly purchased British bottled contents antimony concentration ranged between 0.03 and 6.61 μg L(-1) with only one sample exceeding the EU acceptable limit. Concentrations of Cd, Ge, Zn, Al, Be, Ti, Co and Pb were also measured. At realistic temperatures of 40 and 60 °C antimony concentration in deionised water in bottles remained below the EU acceptable limit even after 48 h exposure. The limit was exceeded for most exposures at 80 °C. Concentration of antimony in some bottled contents exceeded the EU limit after 11 months of storage at room temperature. Bottle aging and increase in bottle volume were associated with decreased migration of antimony from bottles.  相似文献   

19.
In groundwater, used for drinking water supply in the greater industrial area of Thessaloniki, in Northern Greece, concentrations of total arsenic exceeded the WHO provisional guideline value and the EU maximum contaminant level (MCL) of 10 μg/L. The concentration of total arsenic was in the range between 4–130 μg/L, whereas the median value was 36 μg/L and the average concentration 46 μg/L. Nine out of the eleven wells contained total arsenic at concentration higher than 10 μg/L and it should be stressed that 6 of them contain arsenic at concentrations between 10 (new MCL) and 50 μg/L (previous MCL). The examined groundwaters were found to contain elevated concentrations of manganese and phosphate. Arsenic had a positive correlation with the pH, indicating the possible effect of pH on arsenic mobilisation. These findings emerge the problem of contamination from arsenic, since, according to the EU directive 98/83, all drinking water sources within the European Union should have achieved compliance with the new limits by 12/2003, implying that the situation requires urgent remedial action.  相似文献   

20.
The detection and quantification of four phthalate esters??dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and diethylhexyl phthalate (DEHP)??in water, sediment, and some fish species were carried out using flame ionization gas chromatography. The samples were collected from the Ogun river catchments, Ketu, Lagos. The DMP was not detected in the water and fish samples but was detected in sediments collected from four of the six sampling sites. The concentration of DEP, DBP, and DEHP in the fish species ranged from 320.0?C810.0, 380.0?C1,080.0, and 40.0?C150.0 ??g/kg in Tilapia sp.; 310.0?C860.0, 400.0?C1,170.0, and 40.0?C110.0 ??g/kg in Chrysichthys sp.; and 320.0?C810.0, 400.0?C3,970.0, and 30.0?C300.0 ??g/kg (DEHP) in Synodontis sp., respectively. The differences in fish phthalate levels are not statistically significant at p?<?0.05, an indication that phthalate esters accumulation is not fish species dependent. The DEP, DBP, and DEHP values recorded are considerably higher than the maximum allowed concentrations for drinking water prescribed by the US Environmental Protection Agency. The phthalate pollution index and biosediment accumulation factor values were also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号