首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adaptive processes linked to overall metabolism were studied in terms of oxygen consumption and ammonia excretion in each of three self-contained krill populations along a climatic gradient. In the Danish Kattegat, krill were exposed to temperatures which ranged from 4°C to 16°C between seasons and a vertical temperature gradient of up to 10°C during summer. In the Scottish Clyde Sea, water temperatures varied less between seasons and the vertical temperature gradient in summer was only 3°C. Temperatures in the Ligurian Sea, off Nice, were relatively constant around 12-13°C throughout the year, with a thin surface layer (20-30 m) of warm water developing during summer. The trophic conditions were rich in the Kattegat and, particularly, in the Clyde, but comparatively poor in the Ligurian Sea. Oxygen consumption increased exponentially with increasing experimental temperature, which ranged from 4°C to 16°C. Overall respiration rates were between 19.9 and 89.9 µmol O2 g-1 dry wt h-1. Krill from the Kattegat, the Clyde Sea, and the Ligurian Sea all exhibited approximately the same level of oxygen consumption (30-35 µmol O2 g-1 dry wt h-1) when incubated at the ambient temperatures found in their respective environments (9°C, 5°C, and 12°C). This indicates that krill adjust their overall metabolic rates to the prevailing thermal conditions. The exception to this were the respiration rates of Ligurian krill from winter/spring, which were about twice as high as the rates from summer krill despite the fact that the thermal conditions were the same. This effect appears to result from enhanced somatic activity during a short period of increased food availability and reproduction. Accordingly, krill appears to be capable of adapting to both changing thermal and trophic conditions, especially when nutrition is a limiting factor in physiological processes.  相似文献   

2.
Two-year old Tinca tinca L. (previously acclimated for at least 3 weeks to defined temperatures) were subjected to slow (24 h) and fast (2 h) temperature changes from 13.5° to 26°C (observational period 504 h) and from 6° to 16°C and vice versa (observational period 288 h). Effects on coefficient of condition, Na, K, Ca and Cl content of plasma, H2O, Na and K content of muscle and liver, and rates of movements of gill-covers, when the temperature rose to 26°C, were recorded. After temperature change from 13.5° to 26°C, sharp increases occur in the amount of K and Cl in the blood plasma, of H2O in the liver and, if the temperature rise is effected quickly, of muscle H2O content. Substantial reductions were recorded in coefficient of condition and K content of the liver. With a fast rise in temperature, liver Na content decreases sharply at first, but rises again later. After temperature change from 6° to 16°C, Ca increase in blood plasma and (if the temperature is raised slowly), decline in muscle Na content are considerable; drop of liver H2O content is less marked. If the temperature change is effected rapidly, then liver Na content and plasma K diminish initially and, thereafter, rise sharply. In the case of quick temperature change from 16° to 6°C, particularly frequent and marked changes in ion and water contents occur; in most cases adjustment is not complete after 288 h, and the observed variations are often clearly different from those observed in the case of slow temperature change. If temperature is lowered rapidly, the amounts of Na and K in muscle and liver fall and the amount of H2O increases. There is a considerable loss of Na and Cl contents and, after rapid temperature change, also in plasmatic K and Ca contents. The responses of fishes acclimated to 6° and 16°C are compared; at 16°C the coefficient of condition and plasmatic Na, K and Cl contents decrease, and H2O, Na and K contents of the liver increase. The amount of K in the plasma and of H2O, Na and K in the muscle remains unchanged. The stress effect upon ion and water contents during transfer to 6°C is significantly greater during fast than during slow temperature change. The problem of proper differentiation between biological consequences of stress and adaptation phenomena is discussed. Complete adaptation was frequently not attained during the course of our experiments, especially not at low temperatures.  相似文献   

3.
Succinate respiration and various enzyme activities were measured in the white dorsal muscles of golden orfs (goldcoloured race of Idus idus L.) adapted to different temperatures. Some of the values obtained on enzyme activities measured on successive days revealed significant differences in fish adapted to the same temperature. These differences could not be attributed to variations between experimental groups, nor to disturbances caused by the removal of some fish (Figs. 2 and 3). In adaptation experiments, attention must be paid to diurnal fluctuations in enzyme activity; such fluctuations were especially apparent with isocitrate-dehydrogenase. Season can also influence the level of enzyme activity, possibly through changes in day-length. Succinate respiration of golden orfs adapted to 5°C is about 10% higher than in individuals adapted to 20°C (experimental temperature 25°C). Following reverse adaptation from 20° to 5°C (at the rate of 5Co/h), the values approach, after fluctuations, those of 5°C individuals. After raising or lowering the adaptation temperature at the rate of 5 or 2 Co/h), fluctuations in several enzymes appeared initially, as in the abrupt transfers reported by Lehmann (1970a); even if significant, these were, however, not always reproducible. Change in temperature causes a limited phase of increased functional lability.  相似文献   

4.
The combined effects of temperature, light and symbiont density on the metabolic rate and calcification of the temperate coral Astrangia danae were studied experimentally using colonies containing different concentrations of zooxanthellae. After acclimation to five temperatures between 6.5° and 27°C, and incubation at three light levels and in darkness, respiration and photosynthesis were measured and corrected for rates due to commensals alone. Calcification rates were regressed on zooxanthellae concentration and production in order to define “symbiotic” and “non-symbiotic” averages, and the enhancement of calcification by symbiotic interactions in the polyps. Respiration by the polyparium varied less with temperature between 11.5° and 23°C than that of the commensals, suggesting physiological acclimation by the coral tissue. In-vivo zooxanthellae photosynthesis increased linearly with temperature and was near its maximum at 400 μEin m?2 s?1, but the photosynthesis of the endolithic algae of the corallum varied little between 11.5° and 27°C. Calcification at any given temperature was near its maximum at 40 μEin m?2 s?1 in both symbiotic and non-symbiotic corals. CaCO3 deposition increased linearly with temperature in non-symbiotic colonies and in symbiotic colonies incubated in the dark. In symbiotic colonies, calcification in the light increased above these basic rates as temperature rose above 15°C. Below 15°C, symbiotic interactions failed to stimulate calcification, apparently due both to a lowering of zooxanthellae photosynthesis and to a decrease in the enhancing effect of any given level of primary production.  相似文献   

5.
The goal of this study was to quantify growth and metabolic responses of oysters to increased temperatures like those that will occur due to global warming. Impact of temperature on eastern oyster (Crassostrea virginica) shell growth and metabolism was investigated by sampling 24 sites along the eastern North American seaboard ranging from New Brunswick, Canada, to Florida, USA, in March and August 2013. There was a positive correlation between oyster shell thickness and site temperature. At southern sites, shells were up to 65 % thicker than at the northernmost site, likely due to higher precipitation of CaCO3 in warmer water. This was supported by laboratory experiments showing that thicker shells were produced in response to temperatures 2, 4, and 6 °C above ambient seawater temperatures (8–14 °C) in Connecticut, USA. Field experiments with oyster respiration were conducted during winter and summer at 13 sites to compare responses to thermal stress with latitude. Respiration rates were much higher during summer than winter, but the combination of summer and winter data fell along the same exponential curve with respect to temperature. At all sites, temperature-specific metabolic rates at elevated temperatures were lower than predicted, indicating significant seasonal acclimatization by C. virginica.  相似文献   

6.
The shallow-living, benthopelagic copepod species Pseudocyclops xiphophorus Wells (R Soc Edimburg 67:1967), collected over a yearly cycle from the fouling material in the brackish water Lake Faro (North-eastern Sicily), showed marked seasonal fluctuations in population abundances, with maximum numbers recorded in autumn. Highest in situ egg production rates coincided with periods of low adult and juvenile densities and vice versa, except in autumn when peaks in egg production and adult population densities were coincident. In this period, mean daily egg production rates reached a maximum of 4–5 eggs per female, when surface water temperature was 17–18°C. Egg production rates declined drastically in winter and were completely arrested when surface temperatures dropped to 10–12°C. In March, daily egg production rates began to increase again with an increase in ambient temperatures, reaching a maximum at the end of August. In the laboratory, as in the field, mean daily egg production rates were positively correlated with temperature, with values ranging from 2.2 ± 0.3 (16°C) to 8.9 ± 2.6 (30°C) (mean ± S.D.) eggs per female per day. At 32°C, P. xiphophorus females survived but did not reproduce. At 34°C, all specimens died after a few days. In terms of total egg production for the entire female lifespan, maximum values occurred at 16°C and minimum at 24°C. Temperature also dramatically affected female life span, which was shorter at higher temperatures. Development time of eggs decreased with increasing temperature, as also development time from egg to adulthood. Remating was necessary for the continued production of fertile eggs at 16°C because female life span was longer. The unique egg-laying behaviour in this species may ensure higher survival rates of egg stages compared to free-spawning and egg-carrying calanoid species. After releasing the egg pair, the female swims over the eggs with a rotatory motion, secreting a substance which facilitates the adhesion of the eggs to the bottom; she then continues to swim over the eggs until they are attached. Although egg production rates in this species are low compared to other pelagic copepods, they are within the range of values reported for egg-carrying species. The greater fecundity at higher temperatures compared to other subtemperate species indicates that the species is well adapted to the higher temperatures of coastal lagoons and brackish water lakes where it contributes to the biofouling community.  相似文献   

7.
The filtration rates of Mytilus edilis (=galloprovincialis; 40 mm) were determined in relation to food concentration and temperature, using pure suspensions of the unicellular alga Platymonas suecica in concentrations ranging from 3x105 cells/l to 1.5x108 cells/l. The rate of filtration (ml/h/mussel) generally decreased as cell concentrations increased, and dropped to low values when concentrations above 5x107 cells/l were supplied. The amount of water swept clear varied continuously, and noticeable differences in the filtration activity of M. edulis were observed over short time intervals (5 min). Fluctuations of filtered volumes per unit time were greater with lower than with higher concentrations of algae. The influence of temperature on filtration activity was highest between 5°–15°C and 25°–30°C. A temperature increase from 15° to 25°C resulted in only a slight increase in filtration rate. At 5° and 30°C, filtration dropped to very low values, namely 350 and 100 ml/h, respectively. The temperature coefficients for the filtration rates of M. edulis were determined as: Q10 (5° to 15°C)=4.96; Q10 (10° to 20°C)=1.22. The amount of algae cells ingested per mussel per hour is directly related to food concentration. The maximum number of cells filtered/mussel/h in an algal suspension of 70x106 cells/l was 21.5x105 cells/h. Cell concentrations of up to 40x106 cells/l were swept clear without producing pseudofaeces. The critical cell density for M. edulis was reached at algal concentrations of 70 to 80x106 cells/l. Above these concentrations no normal filtration activity was observed.  相似文献   

8.
K. Furch 《Marine Biology》1972,15(1):12-34
The crustaceans Gammarus salinus Spooner and Idotea balthica Pallas live in brackish waters and are capable of tolerating a variety of temperature and salinity conditions. Thus far, the capacity for non-genetic adaptation of such euryplastic animals has only been tested at different levels of constant temperatures. If exposed to both constant (8°, 14° or 20°C) and fluctuating (daily fluctuation: 8°?20°C) temperatures, the tested individuals reveal significant differences in heat resistance which become apparent within 12 h. G. salinus and I. balthica exhibit reasonable (meaningful) heat resistance, i.e., a positive correlation between the degree of heat resistance and the level of adaptation temperature (AT). Following a shift in AT (8° → 20°C or 20° → 8°C) the degree of resistance changes rather fast. This leads, under fluctuating temperature conditions, to diurnal changes in the degree of heat resistance. I. balthica also shows an endogenous diurnal periodicity of its heat resistance. In G. salinus, long-term exposure (2 to 4 weeks) to fluctuating temperatures [duration of temperature change: 2 h (Δ/2 h)] produces, during the day, a mean resistance value which coincides with the value obtained for AT 14°C-controls. This fact results from temperature-independent adaptation speeds (same after decrease and increase of AT). However, fast temperature change (ΔT/1 h) during exposure to fluctuating temperatures leads to a significant augmentation of heat resistance, presumably due to additional stress; such fast temperature changes are less well tolerated than slow fluctuations (ΔT/2 h). In I. balthica, low ATs are less efficient in terms of heat resistance than high ATs (great difference between AT=14° and 20 °C; small difference between AT=8° and 14 °C). In males, lowering of AT from 20° to 8 °C results, within the first 12 h, to faster loss of heat resistance than is the case for gain in heat resistance after AT increase from 8° to 20 °C. However, after prolonged exposure to the new ATs, completion of readaptation is temperature-independent. Under conditions of fluctuating temperatures (ΔT/2 h) resistance increases beyond the mean value (AT=14 °C). Further increase in resistance can be obtained through fast temperature changes (ΔT/1 h). In G. salinus, which occupies habitats with more extensive temperature fluctuations, the responses studied are less pronounced than in I. balthica.  相似文献   

9.
The structuring and organizing effects of apex predators on ecosystems are becoming increasingly well documented. The enhancement of kelp forests via sea otter predation on herbivorous sea urchins is among the earliest and best known examples. This study provides evidence for direct and indirect trophic interactions among sea otters, predatory sea stars, and filter-feeding mussels (Mytilus trossulus) and barnacles (Semibalanus cariosis). In western Massacre Bay at Attu Island (173°E, 53°N), subtidal transects showed sea star body size and biomass density declined markedly between 1983 and 1994 as sea otters reinhabited this area. Mussels and barnacles translocated from the rocky intertidal zone to shallow subtidal habitats to assess loss rates from sea star predation showed lower mortality rates after the arrival of sea otters. Prey mortality rates in subtidal caged controls were consistently low and similar to those of intertidal controls in both years. These findings elucidate a trophic pathway by which sea otters can influence ecosystems separate from the well-known sea otter/sea urchin/macroalgae cascade.  相似文献   

10.
Pseudopleuronectes americanus spawns in late winter near New York, and its eggs may be found in shallow water under ice at temperatures below the usual freezing point of vertebrate tissues. Survival and duration of development at a variety of constant temperatures were recorded for artificially fertilized eggs in the laboratory. Many eggs hatched into normal larvae after 2 months at the lowest temperature tried,-1.8°C. The upper lethal temperature was about 15°C. There was a linear relation between log time and temperature in the minimum mortality range (0° to 10°C), with a Q10 of about 4.8.  相似文献   

11.
With global climate change, ocean warming and acidification occur concomitantly. In this study, we tested the hypothesis that increasing CO2 levels affect the acid–base balance and reduce the activity capacity of the Arctic spider crab Hyas araneus, especially at the limits of thermal tolerance. Crabs were acclimated to projected oceanic CO2 levels for 12 days (today: 380, towards the year 2100: 750 and 1,120 and beyond: 3,000 μatm) and at two temperatures (1 and 4 °C). Effects of these treatments on the righting response (RR) were determined (1) at acclimation temperatures followed by (2) righting when exposed to an additional acute (15 min) heat stress at 12 °C. Prior to (resting) and after the consecutive stresses of combined righting activity and heat exposure, acid–base status and lactate contents were measured in the haemolymph. Under resting conditions, CO2 caused a decrease in haemolymph pH and an increase in oxygen partial pressure. Despite some buffering via an accumulation of bicarbonate, the extracellular acidosis remained uncompensated at 1 °C, a trend exacerbated when animals were acclimated to 4 °C. The additional combined exposure to activity and heat had only a slight effect on blood gas and acid–base status. Righting activity in all crabs incubated at 1 and 4 °C was unaffected by elevated CO2 levels or acute heat stress but was significantly reduced when both stressors acted synergistically. This impact was much stronger in the group acclimated at 1 °C where some individuals acclimated to high CO2 levels stopped responding. Lactate only accumulated in the haemolymph after combined righting and heat stress. In the group acclimated to 1 °C, lactate content was highest under normocapnia and lowest at the highest CO2 level in line with the finding that RR was largely reduced. In crabs acclimated to 4 °C, the RR was less affected by CO2 such that activity caused lactate to increase with rising CO2 levels. In line with the concept of oxygen and capacity limited thermal tolerance, all animals exposed to temperature extremes displayed a reduction in scope for performance, a trend exacerbated by increasing CO2 levels. Additionally, the differences seen between cold- and warm-acclimated H. araneus after heat stress indicate that a small shift to higher acclimation temperatures also alleviates the response to temperature extremes, indicating a shift in the thermal tolerance window which reduces susceptibility to additional CO2 exposure.  相似文献   

12.
The aim of the present study was to evaluate, for the first time, the effect of environmental warming on the metabolic and behavioral ecology of a temperate seahorse, Hippocampus guttulatus. More specifically, we compared routine metabolic rates, thermal sensitivity, ventilation rates, food intake, and behavioral patterns at average spring temperature (18 °C), average summer temperature (26 °C), temperatures that they endure during summer heat wave events (28 °C), and in a near-future warming scenario (+2; 30 °C) in Sado estuary, Portugal. Both newborn juveniles and adults showed significant increases in metabolic rates with rising temperatures. However, newborns were more impacted by future warming via metabolic depression (i.e., heat-induced hipometabolism). In adult stages, ventilation rates also increased significantly with environmental warming, but food intake remained unchanged. Moreover, the frequency of swimming, foraging, swinging, and inactivity did not significantly change between the different thermal scenarios. Thus, we provide evidence that, while adult seahorses show great resilience to heat stress and are not expected to go through any physiological impairment and behavioral change with the projected near-future warming, the early stages display greater thermal sensitivity and may face greater metabolic challenges with potential cascading consequences for their growth and survival.  相似文献   

13.
Average radial growth rates of the hemispherical aragonite colonies deposited by the Indo-Pacific scleractinian reef coral Platygyra spp. were determined by measuring the thickness of density variations in the skeleton that are revealed by X-radiography. Ninety-one specimens from 21 localities were examined, but only 54 of these exhibited well-defined growth-banding. The apparent temperature dependence of growth rate is linear over the range 23.9° to 29.3°C, averaging 5.4±0.94 mm/year at 24°C, 8.0±0.42 mm/year at 27°C, and 9.7 ±0.58 mm/year at 29°C (90% confidence limits). Expression of the influence of temperature on growth rate in terms of the Arrhenius equation yields an activation energy of 20,680 cal/mole, which is comparable to values for typical biological reactions, but is only half that reported for skeletogenesis in another reef coral, Pocillopora damicornis, on the basis of controlled incubation studies involving 45Ca uptake.  相似文献   

14.
Rates of progression and transmission of black band disease (BBD) on the staghorn coral, Acropora muricata, were compared between months for seasonal in situ studies and between temperature treatments in experimental aquaria manipulations at Lizard Island on the Great Barrier Reef (GBR). In situ field experiments demonstrated that BBD progressed along branches approximately twice as fast (1.7–2.4 times) during the austral summer month of January (0.99 ± 0.04 cm/day) than in the cooler months of July (0.58 ± 0.04 cm/day) and May (0.41 ± 0.07 cm/day). Transmission of BBD between colonies was also accelerated in warmer months, with signs of infection becoming visible 1.2 days earlier in January compared to May. The greater seawater temperatures by ∼2 to 3°C and light intensities by up to 650 μE/m2/s in January, suggest that rates of progression and transmission of BBD are linked to one or both of these parameters. Manipulative experiments in summer provide corroborative evidence that elevated temperatures increase rates of BBD progression, with the disease progressing 1.3 times more rapidly in the 32°C elevated temperature treatment than in the 30°C ambient treatment (1.17 ± 0.06 cm/day versus 0.92 ± 0.07 cm/day; F 2,6 = 7.66, P = 0.022). In contrast, although a trend for greatest BBD progression was measured in elevated temperature treatments of 29°C (0.46 ± 0.07 cm/day) and 31°C (0.52 ± 0.06 cm/day) in winter, these rates did not differ significantly (F 3,7 = 1.72, P = 0.249) from those measured for the ambient 27°C treatment (0.37 ± 0.06 cm/day) or the field controls (0.41 ± 0.09 cm/day). The lower rates of BBD progression in the 31°C winter treatment (0.52 ± 0.06 cm/day) than in the 30°C (0.92 ± 0.07 cm/day) summer treatment, may have been a response to 28-fold decreased light irradiance in the former, suggesting that high irradiance in combination with elevated temperatures may promote progression of BBD. Results from this study indicate that the impact of elevated temperature on BBD progression is complex with a combination of environmental factors including temperature and light playing key roles in progression and transmission of the disease.  相似文献   

15.
Lessonia nigrescens and Durvillaea antarctica, two large sub-Antarctic brown algae from the southern Chilean coast, were exposed to solar UV radiation in an outdoor system during a summer day (for 11 h) as well as to artificial UV radiation under controlled laboratory conditions at two temperatures (15 and 20 °C) for 72 h. Chlorophyll a fluorescence–based photoinhibition of photosynthesis was measured during the outdoor exposure, while electron transport rates, lipid peroxidation, antioxidant activity and content of phlorotannins were determined at different time intervals during the laboratory exposure. Under natural solar irradiances in summer, both species displayed well-developed dynamic photoinhibition: F v/F m values decreased by 70 % at noon coinciding with the levels of PAR >1,500 μmol m?2 s?1 and UV-B radiation >1 W m?2 and recovered substantially in the afternoon. In treatments including UV radiation, recovery in D. antarctica started already during the highest irradiances at noon. The results from laboratory exposures revealed that (a) elevated temperature of 20 °C exacerbated the detrimental effects of UV radiation on photochemical parameters (F v/F m and ETR); (b) peroxidative damage measured as MDA formation occurred rapidly and was strongly correlated with the decrease in F v/F m, especially at elevated temperature of 20 °C; (c) the antioxidant activity and increases in soluble phlorotannins were positively correlated mainly in response to UV radiation; (d) phlorotannins were rapidly induced but strongly impaired at 20 °C. In general, short-term (2–6 h) exposures to enhanced UV radiation and temperature were effective to activate the photochemical and biochemical defenses against oxidative stress, and they continued operative during 72 h, a time span clearly exceeding the tidal or diurnal period. Furthermore, when algae were exposed to dim light and control temperature of 15 °C for 6 h, F v/F m increased and lipid peroxidation decreased, indicating consistently that algae retained their ability for recovery. D. antarctica was the most sensitive species to elevated temperature for prolonged periods in the laboratory. Although no conclusive evidence for the effect of the buoyancy of fronds was found, the interspecific discrepancies in thermo-sensitivity in the UV responses found in this study are consistent with various ecological and biogeographical differences described for these species.  相似文献   

16.
Growth and metabolism of the winter flounder Pseudopleuronectes americanus were studied in the laboratory at 2°, 5° and 8°C. Dry-weight determinations of growth demonstrated significant direct regressions of growth on temperature. Mean, daily specific growth rates were 10.1%/day at 80°C, 5.8%/day at 50°C, and 2.6%/day at 2°C. Time to metamorphosis was 49 days at 8°C and 80 days at 5°C. Larvae did not survive to metamorphosis at 2°C. Absolute values of routine metabolism expressed in μl of oxygen consumed regressed on body weight were best described by a third-degree polynomial. Larval routine metabolism increased from hatching to metamorphosis, at which time it declined before again increasing. Temperature directly affected routine metabolism. Metabolism on a unit-weight basis decreased with increasing size and was also directly influenced by temperature.  相似文献   

17.
Over the last few years there has been much debate about the hypothesis that anthropogenic emissions of CO2 and other greenhouse gases increase global temperature permanently. By using recent advances in time series econometrics, this paper tries to answer the question on how human activity affects Earth’s surface temperatures. Bearing in mind this goal, we estimated the long-run cointegration relations between global temperatures and changes in radiative forcings by a set of perturbing factors. We found that the temperature response to a doubling in radiative forcing of anthropogenic greenhouse gases is + 2.94 °C [95 % CI: + 1.91, + 3.97], in perfect accordance with prior research, and that the orthogonalized cumulated effect over a 100 year time period, in response to a unit increase of size of one standard deviation in greenhouse gas radiative forcing, is + 3.86 °C [95 % CI: + 0.03, + 6.54]. Conversely, the amplitude of solar irradiance variability is hardly sufficient to explain observed variations in the Earth’s climate. Our results show that the combined effect of stochastic trends attributable to anthropogenic radiative forcing variations are driving the Earth’s climate system toward an ongoing phase of global warming, and that such long-run movement is unlikely to be transient.  相似文献   

18.
The success that the putative alien species Oculina patagonica is able to survive under different environmental conditions may be benefiting its establishment and spreading along the Mediterranean Basin. Our objectives were to determine the response of this species, in terms of growth and bleaching, under different environmental conditions. Field data on colony growth and bleaching were obtained for a period of 18 months (from June 2010 to December 2011), in the Alicante Harbour (38°20′11″N, 00°29′11″W) and the Marine Protected Area of Tabarca (38°09′59″N, 00°28′56″W). Additionally, data on sedimentation rates, chlorophyll a concentration and organic matter were also collected. Moreover, the role of light over growth and bleaching of the coral was also studied with a field experiment. Our results showed that growth rates were similar among localities (eutrophic and oligotrophic environments), decreasing with increasing perimeter of the colony. Growth rates were at a minimum during cold months (13 °C) and enhanced during warm months until a threshold temperature; thereafter, bleaching was observed (>28 °C), being adverse for coral growth. In addition, light attenuation could act such as local stress, increasing the coral bleaching with the increase in seawater temperature. Our findings confirmed that O. patagonica has a broad tolerance to seawater temperature, irradiance and trophic water conditions, in addition to its ability to thrive through bleaching events, mainly in eutrophic environments, probably related to food availability.  相似文献   

19.
Temperature variability is particularly pronounced in intertidal systems. The importance of considering this variability has been increasingly recognised, especially in the context of climate change and disease dynamics. Here, we investigated the effects of temperature variability on the transmission of the intertidal trematode Maritrema novaezealandensis. The experimental treatments were 15 °C (control), 15 + 5 °C daily, 15 + 10 °C every second day, 15 + 15 °C every third day (overall equal thermal loading), and a heat wave treatment (15 + 10 °C daily). Daily 6 h incubations were carried out corresponding to daytime low tides over a 12-day period. Effects on output of transmission stages (cercariae) from infected Zeacumantus subcarinatus snail hosts and transmission success of cercariae to Paracalliope novizealandiae amphipod hosts were quantified, as well as the survival of amphipods. Results showed differential effects on output and transmission success. The number of cercariae emerging was similar for treatments with equal thermal loading, but was substantially increased in the heat wave treatment. Transmission success was highest and comparable for the treatments with regular daily temperature increases (i.e. 15 + 5 °C and heat wave), compared to other treatments. Amphipod survival was not affected by temperature treatment directly, but by the number of parasites infecting an amphipod, as well as amphipod sex. These results demonstrate that cercarial output depends mostly on total thermal loading, whereas successful infection of amphipods is determined by total time above 15 °C. Repeated exposure to ~25 °C, as expected under a heat wave scenario, therefore increases both transmission pressure and success, and hence, the risk of parasite-induced mortality in amphipods.  相似文献   

20.
The effect of light and temperature on the growth of Microcystis ichthyoblabe and Anabaena aphanizomenoides, isolated from the subtropical Oued Mellah lake, Morocco (33°30′N–07°20′W), were investigated in batch culture. Growth rates at 66 light–temperature combinations were determined and fitted with different mathematical models. The results show that the two Cyanobacteria grow at all light intensities and temperatures, except at 10 °C for A. aphanizomenoides, where the growth was strongly limited. The μmax of M. ichthyoblabe increased with temperature from 0.56 d?1 at 10 °C to 1.32 d?1 at 35 °C. At all tested temperatures, a relative photoinhibition within the studied range of irradiance was observed and the photosensitivity was thermodependent. For Anabaena, the obtained μmax ranged between 0.07 d?1 at 10 °C and 1.46 d?1 at 35 °C, and a weak photoinhibition was observed at 15 °C. The positive correlation between μmax and Iopt (r2≥0.93) indicates a close interaction between light and temperature on the cyanobacteria growth. The results obtained in this work suggest that the growth of these two species is possible under low light and low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号