首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in functional traits between invasive and native plant species are believed to determine the invasion success of the former. Increasing amounts of anthropogenic nitrogen (N) are continually deposited into natural ecosystems, which may change the relative occurrence of the different N deposition forms (such as NH4–N, NO3–N, and CO(NH2)2–N) naturally deposited. Under high N deposition scenarios, some invasive species may grow faster, gaining advantage over native species. In a greenhouse experiment, we grew invasive and native Amaranthus species from seed both alone and in competition under simulated N enriched environments with different forms of N over 3 months. Then, we measured different leaf traits (i.e., plant height, leaf length, leaf width, leaf shape index, specific leaf area (SLA), and leaf chlorophyll and N concentrations). Results showed that the competition intensity between A. retroflexus and A. tricolor decreased under N deposition. This may be due to the large functional divergence between A. retroflexus and A. tricolor under simulated N deposition. Phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus were significantly lower than in A. tricolor. The lower range of phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may indicate a fitness cost for plastic functional traits under adverse environments. The restricted phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may also stabilize leaf construction costs and the growth rate. Meanwhile, the two Amaranthus species possessed greater plasticity in leaf N concentration under NO3–N fertilization, which enhanced their competitiveness.  相似文献   

2.
Plant functional traits weighted by cover-abundance have been used to measure change across a wide range of temperature, moisture and grazing gradients. We use this approach along a chronosequence of disease infestation (Phytophthora cinnamomi) in the species-diverse Banksia woodlands of the Southwest Australian Floristic Region (SWAFR). We compare the use of absolute (community-weighted totals-CWT) and relative cover data (community-weighted means-CWM) to demonstrate the importance of total cover change in reference to the Mass Ratio Hypothesis.Plant species cover-abundance was recorded along a space-for-time disease chronosequence, and functional trait data collected for the 48 dominant species from healthy vegetation. Six traits with deduced links to key ecosystem functions were measured for each species and values for two indices (CWT and CWM) compared along the disease chronosequence. Trait data was collected on plant height, growth form, specific leaf area, leaf dry matter content, root pattern and carbohydrate storage.Despite substantial shifts in individual species cover and a reduction in total species cover, the majority of CWM values did not change significantly following disease infestation. The use of relative cover-abundance data disregards important changes in total species cover, apparent from our comparative analysis. In contrast to CWMs, all CWT values were reduced following disease infestation, suggesting a potential reduction in productivity, reduced capacity as a carbon sink and altered site water balance. Verification of these potential changes in ecosystem functions is required using fine-scale quantitative techniques. The CWT index is complementary to traditional CWMs and useful when analysing changes in plant trait data where total species cover changes have been detected. In relation to P. cinnamomi infestation, shifts in CWT trait values indicate the ability of an introduced plant pathogen to have substantial indirect impacts beyond substantial floristic change.  相似文献   

3.
Choices have to be made to manage invasive species because eradication often is not possible. Both ecological and social factors have to be considered to improve the efficiency of management plans. We conducted a social study on Fallopia spp., a major invasive plant taxon in Europe, including (1) a survey on the perception of a landscape containing Fallopia spp. using a photoquestionnaire and (2) an analysis of the social representations of Fallopia spp. of managers and users in one highly invaded area and one less invaded area. The respondents to the photoquestionnaire survey appreciated the esthetics of the landscapes less when tall Fallopia spp. were present. Few people were able to identify and name the plant, and this knowledge negatively affected the appreciation of the photos containing Fallopia spp. The central core of the social representation of Fallopia spp. was composed of the invasive status of the plant, its density, and its ecological impacts. The peripheral elements of the representation depended on the people surveyed. The users highlighted the natural aspect whereas the managers identified the need for control. In the invaded area, the managers qualified the species as “unmanageable,” whereas the species was qualified as “foreign” in the less invaded area. Those results provide insights that have to be included when objectives of management plans of these species are selected.  相似文献   

4.
Two of the central goals of immunoecology are to understand natural variation in the immune system among populations and to identify those selection pressures that shape immune traits. Maintenance of the immune system can be costly, and both food quality and parasitism selection pressure are factors potentially driving immunocompetence. In tritrophic interactions involving phytophagous insects, host plants, and natural enemies, the immunocompetence of phytophagous insects is constrained by selective forces from both the host plants and the natural enemies. Here, we assessed the roles of host plants and natural enemies as selective pressures on immune variation among natural populations of Lobesia botrana. Our results showed marked geographical variation in immune defenses and parasitism among different natural populations. Larval immune functions were dependent of the host plant quality and were positively correlated to parasitism, suggesting that parasitoids select for greater investment into immunity in moth. Furthermore, investment in immune defense was negatively correlated with body size, suggesting that it is metabolically expensive. The findings emphasize the roles of host plants and parasitoids as selective forces shaping host immune functions in natural conditions. We argue that kinds of study are central to understanding natural variations in immune functions, and the selective forces beyond.  相似文献   

5.
外来植物入侵是全球性环境问题.我国植物入侵态势严峻,随着全球化的提速,这一威胁将加剧.总结外来种入侵力的主要理论,分析其生态学机制、常见的理解误区,剖析入侵力的主要表现形式和产生的机制,可为进一步明确未来研究方向,提高预测、预警、预防和治理工作效率提供参考.通过总结分析发现:理论间存在部分包含、支持、相悖等逻辑关系,并...  相似文献   

6.
The effect of local ant species on the dispersal success of a myrmecochorous plant, Helleborus foetidus, was analyzed in two populations of the Iberian Peninsula (Caurel and Cazorla, respectively). The contribution of the various local ant species to dispersal was very unequal. While 5 and 19 ant taxa visited the plants of Caurel and Cazorla, respectively, most removal activity (67 and 80%) was performed by two species only (Formica lugubris and Camponotus cruentatus, respectively). Visits by dispersers were also unequally distributed between neighboring plants. While some plants were always visited during the period of seed release, others were never visited. A regression model indicated that this pattern might be explained by two plant traits: ants preferred to visit plants that released more seeds and whose elaiosomes were richer in oleic acid. Although it has long been known that this compound triggers removal by ants, it is the first demonstration that quantitative variations in elaiosome traits contribute to variation in dispersal success. Finally, other variables being equal, morphological traits (seed size, elaiosome size, and elaiosome/seed size ratio) did not affect ant behavior. Although myrmecochory has long been considered a diffuse interaction, our results support the idea that, at local scale, a limited number of ant species may be decisive to its evolution.  相似文献   

7.
我国北方两地环境臭氧浓度对矮菜豆生长的影响   总被引:2,自引:2,他引:0  
地表臭氧对植物具有显著毒害作用,矮菜豆(Phaseolus vulgaris L.)已被证实对臭氧非常敏感.选用对臭氧敏感性不同的矮菜豆(R123,臭氧耐受性及S156,臭氧敏感性)分别在3个地点(北京昌平、北京生态中心、哈尔滨市)进行室外直接暴露实验,旨在探讨当前环境臭氧浓度对矮菜豆生长的影响.结果表明,生态中心和昌平两地菜豆在当前臭氧浓度下叶片都出现严重臭氧损伤症状,整个生长季S156型菜豆平均臭氧损伤比例比R123型菜豆高23.5%;臭氧损伤自开花期开始,开花期至结荚期损伤加剧,在豆荚成熟期臭氧损伤比例达到最大值.豆荚产量对比发现,昌平和生态中心两地S156型与R123型豆荚产量比值分别为0.48和0.24,哈尔滨地区为0.73,二者比值为1视为生长不受臭氧影响.可见,北京地区较高的环境臭氧浓度已使敏感性作物矮菜豆显著减产.  相似文献   

8.
Results from no-choice field and greenhouse studies established an inverse relationship between plant trichome density in cotton and the level of successful attacks on Heliothis zea (Boddie) eggs by the parasite, Trichogramma pretiosum (Riley) and the predator, Chrysopa rufilabris (Burmeister). Thus, plant damage from H. zea can be reduced on glabrous cotton phenotypes due to antixenosis and increased entomophage effectiveness compared to hirsute and pilose phenotypes. Studies by other scientists which demonstrate interactions of natural enemies with host-plant resistance in cotton are also discussed. Symbiotic relationships between the host-plant and its associated predator/parasitoid complex may significantly influence the expression of host-plant resistance in cotton. Scientists involved in programs for development of host-plant resistant cultivars are encouraged to utilize sources of resistance which increase effectiveness of key natural enemies of the major pest species.  相似文献   

9.
Current models in evolutionary ecology predict life history alterations in response to habitat suitability to optimize fitness. Only few empirical studies have demonstrated how life history traits that are expected to trade off against each other differ among environments. In Europe, many salt marshes have been recently invaded by the grass Elymus athericus. Previous studies however showed higher densities of the endangered spider Arctosa fulvolineata (Araneae: Lycosidae) in invaded salt marshes compared to natural habitats, which suggests a lower habitat suitability in the latter. The aim of this study was to determine if this emerging habitat (1) affects the amount of resource acquisition and (2) alters the balance between life history traits that are expected to trade off against each other in this stenotopic salt marsh species. As suggested by theoretical studies, an optimization of fitness by increasing egg size at the cost of decreasing fecundity in unsuitable (i.e., natural) habitats was expected. Females presenting cocoon were then collected in close invaded and natural salt marsh areas within the Mont Saint-Michel Bay (France). By considering female mass as covariate, cocoon mass, number of eggs, and egg volume were compared between both habitats. Clutch mass was strongly determined by female mass in both habitats. Clutch mass was however significantly smaller in the natural habitat compared to the invaded habitat, indicating a higher resource acquisition in the latter. When correcting for female size, fecundity was additionally increased in the invaded habitat through a significant decrease in egg size. This phenotypic response can be explained by differences in habitat structure between invaded and natural habitats: the former offers a more complex litter favoring nocturnal wanderers like A. fulvolineata. The existence of such an adaptive reproduction strategy depending on habitat suitability constitutes an original case of an invasion that favors an endangered species.  相似文献   

10.
The effects of host-plant resistance on cowpea phytophagous insects and their natural enemies under pure and mixed crop conditions was evaluated at Minjibir, Kano State, Nigeria, in 1992–1994 crop seasons. Cowpea Vigna unguiculata cv ‘IT86D-715' (susceptible to insect pests) and a wild Vigna line Vigna vexillata ‘TVnu 72' (resistant to most insect species) were planted alone and in mixtures with millet (Pennisetum glaucum) in plots of 25×25 m.Mixed cropping had limited effect on major insects and natural enemies. Colonies of Aphis craccivora were significantly smaller and there were more adults of Maruca vitrata in crop mixtures than in monocultures. However, flower and raceme infestation by larval M. vitrata, Megalurothrips sjostedti, and Sericothrips sp. were similar in crop mixtures and monocultures. Empoasca sp. populations and seedling infestation by beanfly Ophiomyia phaseoli were also similar in mixtures and monocultures as well as pod damage by M. vitrata and populations of Clavigralla tomentosicollis. Parasitization rates of M. vitrata, C. tomentosicollis and O. phaseoli and predator–prey ratios of spiders and Orius sp. were similar across cropping systems. Host-plant resistance in TVnu 72 drastically reduced insect populations and damage. Grain yield per hill was high in cowpea IT86D-715 and was not affected by intercropping with millet. Grain yield of TVnu 72 was poor and reflected the low yield potential of this accession.Host-plant resistance is an effective means of controlling insect pest damage in cowpea and there is no evidence that high levels of resistance reduced natural biological control.  相似文献   

11.
Fires in the Cerrado savanna are a severe form of disturbance, but some species are capable of resprouting afterwards. It is unknown, however, how and whether post-fire resprouting represents a stressful condition to plants and how their rapid re-growth influences both the production of biochemical compounds, and interactions with mutualistic ants. In this study, we examined the influence of post-fire resprouting on biotic interactions (ant–plant–herbivore relationships) and on plant stress. The study was performed on two groups of the extrafloral nectaried shrub Banisteriopsis campestris (Malpighiaceae); one group was recovering from fire while the other acted as control. With respect to biotic interactions, we examined whether resprouting influenced extrafloral nectar concentration (milligrams per microliter), the abundance of the ant Camponotus crassus and leaf herbivory rates. Plant stress was assessed via fluctuating asymmetry (FA) analysis, which refers to deviations from perfect symmetry in bilaterally symmetrical traits (e.g., leaves) and indicates whether species are under stress. Results revealed that FA, sugar concentration, and ant abundance were 51.7 %, 35.7 % and 21.7 % higher in resprouting plants. Furthermore, C. crassus was significantly associated with low herbivory rates, but only in resprouting plants. This study showed that post-fire resprouting induced high levels of plant stress and influenced extrafloral nectar quality and ant-herbivore relationships in B. campestris. Therefore, despite being a stressful condition to the plant, post-fire resprouting individuals had concentrated extrafloral nectar and sustained more ants, thus strengthening the outcomes of ant–plant mutualism.  相似文献   

12.
A maize (Zea mays L.) hybrid was infested with 30 southwestern corn borer [Diatraea grandiosella (Dyar)] larvae per plant at 4, 5, 6, 7 or 8 weeks after planting in a three-year study conducted at Mississippi State, Mississippi. Visual ratings of leaf feeding damage were highest when plants were infested 5 weeks after planting. Plant height increased linearly with the age of plants at infestation. Height of infested plants was significantly less than uninfested plants only when infestations were made 4 weeks after planting. The relationship between age of plants at infestation and yield was curvilinear. Yields were significantly reduced at all infestation times; however, the least yield reduction occurred when plants were infested 6 weeks after planting. To evaluate resistance to southwestern corn borer damage, infestation at 4 or 5 weeks after planting appeared to be most satisfactory. Yield reductions following infestation at 7 and 8 weeks after planting indicated that, when infestations are late, leaf feeding damage ratings alone may not be satisfactory indicators of plant damage.  相似文献   

13.

The pollination syndrome concept implies that flowers evolved with particular sets of characteristics, such as colors, shapes, orientations, and rewards, as a means of attracting pollinators. However, these traits may have also evolved to deter unwanted visitors. The North American genus Penstemon exhibits a great floral diversity that is mainly associated with bumblebee and hummingbird pollination. Evolutionary shifts from insect pollination to hummingbird pollination have occurred in Penstemon repeatedly, but some species maintain mixed-pollination systems and intermediate floral traits between bee- and hummingbird-pollination modes. The apparently intermediate floral traits of species with mixed-pollination systems might be potentially acting to deter bumblebee foragers. Then, bird-flower traits might be selected with increased hummingbird visitation over evolutionary time might, resulting in specialization to and the evolution of floral traits present in hummingbird-pollinated species. Here, we modified bee-pollination floral traits in Penstemon gentianoides with a mixed pollination system, to resemble hummingbird-pollination traits, and measured the effects of trait modification on bumblebee foraging behavior and plant female reproductive fitness. Our results showed that reduction in the width of the corolla tube and the absence of the corolla lip negatively affects bumblebee visitation and their efficiency as pollinators, and that the synergistic interaction of both traits enhanced the “anti-bee” effect. We conclude that acquisition of floral traits that resemble those of hummingbird-pollination enables Penstemon plant species to deter bumblebee visits.

  相似文献   

14.
The rising concentration of carbon dioxide [CO2] in the atmosphere represents an increase in a growth-limiting resource for C3 crop species. Identification of lines or characteristics of lines which have superior yield at elevated [CO2] could aid in adaptation to this global change. While intraspecific variation in responses to elevated [CO2] has been found in several species, intraspecific differences in crop yield responses to elevated [CO2] under field conditions have seldom been documented. In this 4-year study, the responses of photosynthesis, growth, pod number, seed number and size, and seed yield to the elevation of [CO2] to 180 μmol mol−1 above the current ambient concentration were examined in four varieties of Phaseolus vulgaris in the field, using open-top chambers. There was a significant variety by [CO2] interaction for seed yield, with seed yield at elevated [CO2] ranging from 0.89 to 1.39 times that at ambient [CO2] (mean 1.17×) in the different varieties, when averaged over 4 years. The highest yielding variety at elevated [CO2] was not the highest yielding variety at ambient [CO2]. The varieties with the largest and smallest yield responses both had an indeterminate growth habit. Down-regulation of photosynthesis at elevated [CO2] only occurred in the two indeterminate varieties, and there was no significant correlation between the response of single leaf photosynthetic rate and the response of seed yield to elevated [CO2] among varieties, nor between the responses of stem mass and seed yield. The change in the number of pods at elevated [CO2] was the primary determinant of the response of seed yield. These results indicate that significant variation in the response of seed yield to elevated [CO2] under field conditions does exist among varieties of P. vulgaris, and that variation in the response of pod and seed number may be more important than variation in photosynthetic response.  相似文献   

15.
The present work aimed at studying the effect of Oxalis pes-caprae invasion in the herbaceous understory of olive groves in the island of Lesvos, Greece. The number of species, their biomass and dead plant material production was followed throughout the vegetative period in invaded and non-invaded plots. Species richness in the area invaded by O. pes-caprae gradually declined and was significantly smaller in comparison with the natural vegetation. Although biomass was equal in the invaded and non-invaded areas 1 month after germination, annual net primary production (NPP) was three times smaller in the invaded than the non-invaded area. Moreover, aboveground dead plant material of O. pes-caprae decomposed faster than a mixture of litter species of the natural vegetation. Lower biomass production in combination with increased decomposition rates of O. pes-caprae is expected to lead to reduced soil C sequestration in invaded areas. It was concluded that although O. pes-caprae does not add a new life form or functional type to the invaded herbaceous system it has considerable impacts on the diversity and ecosystem functions in olive groves.  相似文献   

16.
The potential of pennywort(Hydrocotyle vulgaris)for phytoremediation of C.I.Acid Blue 92(AB92)was evaluated.The efects of various experimental parameters including pH,temperature,dye concentration and plant weight on dye removal efciency were investigated.The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25°C.Moreover,the absolute dye removal enhanced with increase in the initial dye concentration and plant weight.Pennywort showed the same removal efciency in repeated experiments(four runs)as that obtained from the first run(a 6-day period).Therefore,the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process.Accordingly,a number of produced intermediate compounds were identified.The efect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase,peroxidase and catalase in plant roots and leaves were evaluated.The results revealed a reduction in photosynthetic pigments content under dye treatments.Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium.Overall,the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves.Nevertheless,no significant increase in malondialdehyde content was detected in roots or leaves,implying that the high efciency of antioxidant system in the elimination of reactive oxygen species.Based on these results,pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water,may be efective for phytoremediation dye-contaminated polluted aquatic ecosystems.  相似文献   

17.
Interactions between fleshy fruited plants and frugivores are crucial for the structuring and functioning of biotic communities, particularly in tropical forests where both groups are diverse and play different roles in network organization. However, it remains poorly understood how different groups of frugivore species and fruit traits contribute to network structure. We recorded interactions among 28 plant species and three groups of frugivores (birds, bats, and non-flying mammals) in a seasonal forest in Mexico to determine which species contribute more to network structure and evaluate the importance of each species. We also determined whether fruit abundance, water content, morphology traits, and fruiting phenology are related to network parameters: the number of interactions, species contribution to nestedness, and species strength. We found that plants did not depend on a single group of frugivores, but rather on one species of each group: the bird Pitangus sulphuratus, the bat Sturnira parvidens, and the non-flying mammal Procyon lotor. The abundance, size, and water content of the fruits were significantly related to the contribution to nestedness, number of interactions, and species strength index of plant species. Tree species and birds contributed mainly to the nested structure of the network. We show that the structure of plant-frugivore networks in this seasonal forest is non-random and that fruit traits (i.e., abundance, phenology, size, and water content) are important factors shaping plant-frugivore networks. Identification of the key species and their traits that maintain the complex structure of species interactions is therefore fundamental for the integral conservation of tropical forests.  相似文献   

18.
To investigate the potential role of allelopathy in plant interference and in the successful invasion of alien species Solidago canadensis, aqueous and ethanolic extracts from rhizomes, stems and leaves of S. canadensis were prepared and used as treatment solutions to assess their effects on seed germination and seedling growth in four target species, mulberry (Morus alba); morning glory (Pharbitis nil), wheat (Triticum aestivum) and rape (Brassiea campestris). Reduction and/or growth in germination and growth of the target plant species in the presence of both aqueous and ethanolic extracts at different concentrations indicated that the responses were species-specific and concentration-dependent. Generally, ethanolic extracts (especially from leaves) imposed stronger effects on both seed germination and seedling growth. Extracts with lower concentration at 0.001 g/ml dw could stimulate the seedling growth of rape and morning glory, whereas extracts at any given concentrations have inhibitory effects on wheat and mulberry. It is suggested that the aqueous and ethanolic extracts of all the three parts of S. canadensis have significant allelopathic effects. Although both inhibition and stimulation occurred in the germination and growth of the target species, extracts with higher concentrations definitely inhibit seed germination and seedling growth of all target plants. We suggest that allelopathy plays a more important role than other mechanisms do in the out-competition ofS. canadensis over other plants, and make it invasive in new habitats.  相似文献   

19.
Seed plants with ovules were abundant in the Late Devonian of Euramerica and they contribute significantly to our understanding of their early history. However, coeval ovules have been scarce in other regions of the world. Specimens of the seed plant Cosmosperma polyloba gen. et sp. nov. Wang et al. were recently obtained from the Upper Devonian (Famennian) Wutong Formation, at Fanwan Village, Changxing County, Zhejiang Province, China. This new seed plant has cupulate ovules, the uniovulate cupules with up to 16 distal segments and with minute spines on the outer surface, synangiate pollen organs bearing six to eight microsporangia fused only at the base, and planate and highly dissected pinnules in alternate arrangement. It differs from other Devonian seed plants mainly in the organization and position of the uniovulate and ornamented cupule, and in the highly dissected pinnules. Cosmosperma Wang et al. represents the first Devonian ovules recovered from China or eastern Asia and further illustrates the diversity of early spermatophytes. As for the Late Devonian seed plants, it is suggested that the pollen organs are synangiate and simple in organization, and the branches and leaves are generally planate.  相似文献   

20.
Successful invaders often become established in new ranges by outcompeting native species. The “evolution of increased competitive ability” hypothesis predicts that invasive species are subjected to less predation and parasitization than sympatric native species, and thus can allocate resources from defence and immunity to growth and fecundity, thereby achieving higher fitness. In this study, we examined whether American invasive Polistes dominula paper wasps have reduced immunocompetence. To explore this scenario, we tested their susceptibility towards parasites and pathogens at both the individual (immune defence) and colony levels, i.e. hygienic behaviour (removal of diseased individuals by nestmates). First, we examined the response to the specific coevolved parasite Xenos vesparum (lost after invasion) in terms of individual host susceptibility and hygienic behaviour. Second, we explored the response against general pathogens by quantifying the bacterial clearance in individual wasps after a challenge with Escherichia coli and hygienic behaviour after a challenge with the fungus Beauveria bassiana. Our results show that American invasive P. dominula have a higher response against X. vesparum at the colony level, but at the individual level their susceptibility is not significantly different from conspecifics of the native range. On the other hand, invasive P. dominula display lower response after a challenge with general pathogens at both the individual and colony levels. While supporting the hypothesis of a reduction of immunocompetence towards general pathogens in invasive species, these findings also suggest that the response against coevolved parasites might follow different evolutionary pathways which are not always easily predictable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号