共查询到20条相似文献,搜索用时 46 毫秒
1.
周小平 《中国特种设备安全》2021,(7):83-86
针对快开门式压力容器爆炸事故发生的问题,本文对快开门式压力容器发生爆炸事故的原因进行分析,其原因是振动与啮齿啮合面不均匀磨损、啮齿错位、制造精度低等一个或多个因素共同作用,使压力容器在运行时快开门发生转动,导致爆炸事故的发生.由此提出快开门式压力容器发生爆炸事故的预防措施.开发设计一种栓销式安全联锁装置,有效预防在压力... 相似文献
2.
快开门式压力容器是一种广泛应用于建材、纺织、橡胶、医药、食品、玻璃等行业的固定式压力容器,因其结构的特殊性,对安全联锁保护装置和作业人员操作及应急处置能力要求较高,一旦安全联锁装置失效或作业人员应急处置不当,极易发生安全事故。本文针对快开门式压力容器安全管理的法律法规要求、几种典型快开门式压力容器现状及存在问题,从设计、制造、检验、监管等环节提出快开门式压力容器安全管理措施及建议,以确保其安全运行。 相似文献
3.
快开门式压力容器作为一类特殊的压力容器,具有可快速开启门盖、装卸物料方便等特点,广泛应用于医疗、食品、建筑等领域。但由于其处于疲劳工况,加之人员的不规范操作,存在事故隐患。本文结合快开门式压力容器专项排查和日常定期检验工作的实际案例,重点分析快开门式压力容器在定期检验与安全检查过程中的侧重点,为定期检验和安全监察管理提供一些建议。 相似文献
4.
傅宝建 《特种设备安全技术》2005,(2):39-39
据《容规》第49条的要求:快开门式压力容器的快开门(盖)应设计安全联锁装置,并应具有以下功能:①当快开门达到预定关闭部位方能升压运行的联锁控制功能;②当压力容器的内部压力完全释放,安全联锁装置脱开后,方能打开快开门的联锁联动功能;③具有与上述动作同步的报警功能。 相似文献
5.
6.
7.
陈宇滨 《特种设备安全技术》2011,(3):19-21
快开门主要用于压力容器上实现快速开启和关闭的一种机械装置,由于它开、闭迅速,当容器内的压力未完全释放就打开门或在快开门未完全关合到位容器就进气(汽)加压的情况下,门盖就会带压快速冲开,造成设备毁坏和人员伤亡事故。快开门安全联锁自控装置通过气、电结合自动控制,达到安全操作的目的,确保设备和人身安全。 相似文献
8.
耿巨林 《特种设备安全技术》2009,(4):37-38
《压力容器安全技术监察规程》(99版)第49条规定:“快开门式压力容器的快开门(盖)应设计安全联锁装置并应具备以下3个功能:(1)当快开门达到预定关闭部位方能升压运行的联锁控制功能(以下简称为关门升压联锁功能);(2)当压力容器的内部压力安全释放。安全联锁装置脱开后,方能打开快开门的联锁联动功能;(3)具有与上述动作同步的报警功能”。 相似文献
9.
事故经过2004年8月17日12时10分,某公司一制氧站在氧气充装过程中氧气瓶突然发生爆炸,造成制氧站充装车间整个厂房倒塌,遭到严重破坏,生产被迫停止,幸未造成人员伤亡。直接经济损失3万元。直接原因1.该氧气瓶在使用过程中,留有的压力太低,致使杂质进入气瓶,违反了《气瓶安全监察规程》中的第九章第79条之10“瓶内气体不得用尽,必须留有剩余压力或重量,永久气体气瓶的压力应不小于0.05MPa;液化气体气瓶应留有不少于0.5%~1.0%规定充装量的剩余气体”之规定,是事故发生的主要原因。2.气瓶在充装过程中,操作人员违反 相似文献
10.
快开门式压力容器,具有开启闭合快捷轻便的特点,便于机电一体自动化操作,可以提高劳动效率,降低劳动强度,因而快开门式压力容器被广泛应用于化工、橡胶、纺织、食品、建材等工业领域。常见的代表性的快开门式压力容器如附表。 相似文献
11.
Gesi LiuYongzhi Zhao Yanlei Liu Jinyang ZhengShuiping Sheng Shuxin Han 《Journal of Loss Prevention in the Process Industries》2011,24(2):156-165
The explosion accident caused by residual pressure is one of the most common kinds of accidents in quick actuating pressure vessels. And it is important to provide some reliable methods, which can give reasonable analysis of the explosion. In this study, experiments of the explosion are preformed by using two quick actuating pressure vessels with residual pressure, and a new mathematical model is presented. The model is based on the combination of the Spalart-Allmaras turbulence fluid model and Newton’s second Law for the solid motion. And the model is solved with local remeshing method. By performing the simulation with the same parameters of experiments, the results of the simulation confirm the accuracy of the model. And the results shows the crucial factor of vessel structure, which the maximum ejected speed of the lid highly depends on. Based on that, the optimal design of the structure is presented, which can provide better security. 相似文献
12.
气体爆炸是工业生产和生活领域中爆炸灾害的主要形式之一,研究障碍物对管道内可燃气体爆炸的影响规律具有十分重要的现实意义。运用计算流体动力学软件AutoReaGas,定量地研究了障碍物阻塞率、个数等因素对管道中预混乙炔/空气混和物爆炸压力场的影响规律。计算结果表明,障碍物的个数和阻塞比对管道内乙炔气体爆炸峰值超压均有显著影响。本文的研究结果对于预防和控制气体爆炸灾害有一定的借鉴作用。 相似文献
13.
Z.R. Wang M.Y. Pan J.C. Jiang 《Journal of Loss Prevention in the Process Industries》2013,26(6):1094-1099
Gas explosion in connected vessels usually leads to high pressure and high rate of pressure increase which the vessels and pipes can not tolerate. Severe human casualties and property losses may occur due to the variation characteristics of gas explosion pressure in connected vessels. To determine gas explosion strength, an experimental testing system for methane and air mixture explosion in a single vessel, in a single vessel connected a pipe and in connected vessels has been set up. The experiment apparatus consisted of two spherical vessels of 350 mm and 600 mm in diameter, three connecting pipes of 89 mm in diameter and 6 m in length. First, the results of gas explosion pressure in a single vessel and connected vessels were compared and analyzed. And then the development of gas explosion, its changing characteristics and relevant influencing factors were analyzed. When gas explosion occurs in a single vessel, the maximum explosion pressure and pressure growth rate with ignition at the center of a spherical vessel are higher than those with ignition on the inner-wall of the vessel. In conclusion, besides ignition source on the inner wall, the ignition source at the center of the vessels must be avoided to reduce the damage level. When the gas mixture is ignited in the large vessel, the maximum explosion pressure and explosion pressure rising rate in the small vessel raise. And the maximum explosion pressure and pressure rising rate in connected vessels are higher than those in the single containment vessel. So whenever possible, some isolation techniques, such as fast-acting valves, rotary valves, etc., might be applied to reduce explosion strength in the integrated system. However, when the gas mixture is ignited in the small vessel, the maximum explosion pressures in the large vessel and in the small vessel both decrease. Moreover, the explosion pressure is lower than that in the single vessel. When gas explosion happens in a single vessel connected to a pipe, the maximum explosion pressure occurs at the end of the pipe if the gas mixture is ignited in the spherical vessel. Therefore, installing a pipe into the system can reduce the maximum explosion pressure, but it also causes the explosion pressure growth rate to increase. 相似文献
14.
利用球型容器与管道组合,开展连通容器气体爆炸与泄爆实验,分析连通条件下,火焰在管道中的传播过程及其对起爆容器和传爆容器的压力影响。实验结果表明:连通容器气体爆炸中,火焰从起爆容器到传爆容器传播经历了一段不断加速,但加速度不断减小的过程;泄爆过程中,火焰传播过程与密闭爆炸时基本一致。管道中火焰加速传播,使得传爆容器的爆炸压力和强度相较于作为起爆容器时均明显增加,危险更大,采用与起爆容器相同的泄爆面积,无法满足对连通容器中传爆容器的泄爆。同时,泄爆是一个快速的能量泄放过程应选择合理的泄爆方式,防止二次危害。 相似文献
15.
Qingwu Zhang Juncheng Jiang Mingwei You Yuan Yu Yihu Cui 《Journal of Loss Prevention in the Process Industries》2013,26(6):1230-1237
A pilot scale interconnected vessels experiment system was established, and the closed and vented gas explosion characteristics in the system were studied, using 10% methane–air mixture. Regularity of pressure variation in vessels and flame propagation in linked pipes was analyzed. Furthermore, the effects of transmission style, ignition position, pipe length, and initial pressure on explosion severity were discussed. For the closed explosion: explosion in interconnected vessels presents strongly destructive power to secondary vessel, especially transmission from the big vessel to the small one; the worst ignition position is shifting from ignition in the interconnected pipe to the walls of the two vessels; as far as ignition in big vessel is concerned, the peak pressure in secondary vessel increases with the pipe length much faster than that for ignition in small vessel; the peak pressures in two vessels are approximate linear functions of initial pressure. For the vented explosion: the transmission style and interconnected pipe length have significant impacts on the effect of venting on the protection; in order to obtain the better venting effect, the use of a divergent interconnected pipe from the big vessel to the small one in industry is advised and it is necessary to reduce the interconnected pipe length as far as possible or install flame arrester in the interconnected pipe. 相似文献
16.
为研究连通容器内气体爆炸规律,采用Fluent(经典流体动力学软件)对柱形连通容器内预混气体爆炸过程进行模拟,模拟了不同点火位置和火焰传播方向条件下连通容器内火焰传播过程和压力变化,并分析了连通容器内不同时刻的速度场.结果表明:火焰面在传播过程中并非完全对称,当火焰到达传爆容器后,湍流燃烧剧烈,火焰不规则变形显著;端面点火后在传爆容器内产生的压力峰值和压力波动比中心点火时更大;当起爆容器为大容器时,传爆容器内气体预压缩程度更大,压力峰值更高. 相似文献
17.
建立球形容器与管道、2个球形容器与管道组成的2种形式的连通容器试验装置,研究初始压力对连通容器甲烷-空气混合物泄爆压力的影响。结果表明:连通容器内泄爆超压随初始压力增加而增大,并与初始压力近似成线性关系;对于2个球形容器与管道组成的连通容器,起爆容器的泄爆超压始终小于传爆容器;泄爆方式和点火方式对连通容器泄爆超压有较大影响,大容器点火时,2个容器的泄爆压力差随初始压力增加而增大,但小容器点火时,2个容器的泄爆压力差随初始压力的增加变化较小;初始压力对不同结构和尺寸的连通容器的泄爆压力的影响不同,当令初始压力对大容器点火时,小容器内泄爆压力受影响最大,而当对单球形容器与管道组成的连通容器的小容器点火时,小容器内泄爆压力受影响最小。 相似文献
18.
为研究受限空间内甲烷-氢气-空气混合气体爆炸特性参数分布规律,在20 L球形压力容器装置内开展甲烷-氢气-空气混合气体爆炸实验,探究掺氢比变化对当量比为1的甲烷-氢气-空气混合气体爆炸过程的影响;运用Fluent数值模拟软件,采用标准k-ε湍流模型,结合层流有限速率燃烧模型,探究混合气体爆炸过程中燃烧特性(爆炸温度、压力、密度等)与反应时间的变化规律。研究结果表明:爆炸过程中,添加一定氢气时爆炸压力峰值、爆炸压力上升速率峰值增大,而到达峰值时间缩短;反应初期,中心点火处密度下降,反应釜各处密度持续上升;距离点火点越远,密度变化越大,反应釜中压力分布基本相同。研究结果可为甲烷-氢气-空气混合燃料的安全使用提供相关参考。 相似文献
19.
为研究可燃气体爆炸压力场受障碍物布置的影响情况,运用流体动力学软件AutoReaGas建立不同阻塞程度和不同结构(平面、立体)的障碍物爆炸模型,模拟分析不同布置情况对气体爆炸压力场的影响程度和规律。研究表明:改变障碍物的阻塞程度和结构(平面、立体)都会影响可燃气体的爆炸超压峰值。同种障碍物结构下,随着阻塞率的增加,气体爆炸压力的增加程度在一定范围内呈现出先增大后减小的变化情况;相同阻塞率下,立体障碍物对爆炸压力场产生的影响明显大于平面障碍物。研究立体障碍物与平面障碍物对加速燃烧的影响情况旨在为工业生产过程中的实际应用提供理论依据和基础,为防控气体爆炸灾害提供一定参考借鉴作用。 相似文献
20.
为探究采空区遗煤、松散破碎岩块对瓦斯爆炸的影响,建立缝洞型管道模型,采用数值模拟与理论分析结合方法研究采空区内缝洞型管道内瓦斯爆炸的传播规律及管道长径比对瓦斯爆炸过程中速度与冲击波的影响。研究结果表明:在缝洞型结构内,随着火焰沿管道向前传播,各监测点速度逐渐变大、压力先增加后降低,而压力上升速率则表现出不规则的变化;缝洞结构加剧了火焰燃烧的剧烈程度,提高了管道内各监测点的温度峰值;在缝洞型管道内随长径比r增加,各监测点最大压力峰值以及速度大小依次降低。 相似文献