首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
深井开采沿空留巷顶板锚杆强化控制技术研究   总被引:1,自引:0,他引:1  
随着我国煤矿开采深度的逐年增加,瓦斯含量逐渐增大且赋存异常,回采工作面瓦斯超限问题严重威胁着煤矿的安全生产,而沿空留巷则是解决工作面瓦斯超限问题的最有效途径,但沿空留巷顶板稳定性控制问题则制约了沿空留巷技术在我国更广泛地推广应用。本文以顾桥矿1115(1)采煤工作面沿空留巷为背景,全面总结了沿空留巷顶板控制技术的国内外研究现状及存在的主要问题,并分析了沿空留巷顶板控制的基本原理,在煤巷顶板预应力结构理论的基础上,提出了顾桥矿深井开采沿空留巷顶板稳定性控制的锚杆强化控制技术原理,对巷道所处的不同阶段有针对性的提出了顶板的安全控制技术。该研究成果在顾桥矿1115(1)采煤工作面沿空留巷中得到了成功应用,对类似条件下的沿空留巷顶板控制具有重要的指导意义。  相似文献   

2.
漏风对煤自燃有重要影响,研究漏风形成机制对工作面采空区防火具有重要的作用。针对采空区瓦斯抽采、上覆围岩裂隙发育对采空区漏风影响问题,以沙曲矿沿空留巷综放工作面为研究背景。根据采空区上覆煤岩特性选择经验公式计算采空区裂隙发育高度,分析了沿空留巷侧采空区上覆裂隙发育,现场实测了沿空留巷压埋管及高位钻孔中气体体积分数,并根据实测参数利用数值模拟分析了瓦斯抽采条件下采空区风流流场变化。结果表明:上覆裂隙成为采空区漏风通道,导通距离在27.2~37.2 m;在沿空留巷侧采空区回采距离100m,其氧气体积分数在10%以上,验证了采空区漏风去向;模拟结果显示,沿空留巷侧采空区立体空间范围内氧气体积分数均达到10%以上,模拟结果与实测基本保持一致。最终确定瓦斯抽采条件下沿空留巷的布置及煤岩裂隙发育是形成漏风通道的主要原因。  相似文献   

3.
为了计算综放工作面沿空留巷支护阻力,以结构力学理论为基础,分析综放工作面沿空留巷支护阻力计算模型,建立沿空留巷围岩和支护体的结构力学模型,应用超静定结构和静定结构分析支护体与沿空留巷围岩相互作用机制,推导出巷旁支护阻力的计算公式.结果表明,进行沿空留巷支护阻力力学分析时,要考虑顶板极限断裂前和断裂后两种状态下的受力情况,支护阻力与岩层厚度、容重、煤体极限平衡区宽度、跨距、支护体宽度和巷道宽度等因素密切相关.工业性试验表明,该技术的应用是成功而有效的.因此,综放巷内沿空留巷围岩结构力学模型和支护阻力计算公式是合理的,可在类似条件的综放工作面中应用.  相似文献   

4.
<正>沿空留巷在大倾角采煤工作面的应用,一直是井下采煤不断探讨和急需解决的问题。大海煤矿1801区回采工作面由于煤层倾角大,煤层赋存不稳定等特点,增加了掘进工程量,也严重制约了安全生产。因此,该区在回采的过程中,采用沿空留巷方法,减少掘进工程量,从而提高了煤炭资源回采率,实现了安全高效。下面就沿空留巷在大倾角采煤工作面的应用,谈几点认识。  相似文献   

5.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

6.
为了掌握高瓦斯沿空留巷采空区遗煤自燃危险区域分布规律,指导工作面防灭火工作。采用数值模拟的方法,以首次采用沿空留巷技术的乌兰矿工作面为实例,模拟分析采空区漏风及氧化带三维分布规律。使用单因素分析法,分别模拟高位钻孔、上隅角埋管及地面钻孔抽采对采空区氧气浓度分布的影响。结果表明:多种瓦斯抽采措施下,工作面及沿空留巷均向采空区漏风,导致氧化带范围扩大,但不同抽采措施导致氧化带扩大的程度不同,高位钻孔抽采最弱,上隅角瓦斯抽采次之,地面钻孔抽采最强。沿空留巷附近及上覆采空区供氧时间长,自然发火危险性高。  相似文献   

7.
针对二次采动下沿空留巷围岩变形控制困难问题,揭示了沿空留巷围岩变形规律,建立了二次采动下沿空留巷围岩变形力学模型,推导出了围岩变形的理论公式,据此分析了围岩变形的影响因素,提出了支护对策,并进行了工程实践。结果表明:围岩变形理论公式与现场实测值基本一致;顶底板移近量以底鼓为主,底鼓量为直接底压曲量与老底挠曲量的最大值;各因素对围岩变形影响程度依次为巷旁支护体宽度、迭加应力集中系数、采高、采深、老底弹性模量。围岩变形控制对策应围绕关键性影响因素进行,据此提出“锚网索+高强度墩柱+老底注浆”耦合支护对策,工程实践表明,沿空留巷围岩变形稳定,得到了有效控制。  相似文献   

8.
为掌握分段留巷Y型通风工作面流场及瓦斯浓度在三维空间上的分布规律及采空区高瓦斯浓度区域分布范围,采用现场试验、数值分析和理论分析的方法,分别在检修班和采煤班对工作面、沿空留巷内的流场和瓦斯浓度进行了三维实测,同时借助自主研发的"一种采空区瓦斯浓度区域分布三维实测装置"对靠近留巷侧采空区瓦斯空间分布进行了三维实测和重构。研究结果表明:两进风巷道在靠近工作面煤壁交叉口拐角处风速减小而瓦斯浓度升高,工作面内高瓦斯浓度区域为靠近煤壁上方区域和与沿空留巷交叉口靠近采空区侧,沿空留巷内靠近采空区上角位置瓦斯浓度较高;近留巷侧采空区在距工作面垂直距离35~45 m和距沿空留巷垂直距离25~50 m范围内的采空区上部空间形成瓦斯集聚;工作面采用Y型通风方式时,工作面上隅角瓦斯集聚的问题能够得到很好的解决,但在靠近留巷的采空区内部一定范围内形成高瓦斯浓度区域。  相似文献   

9.
为实现保护层开采工作面生产过程中瓦斯不超限,在分析工作面瓦斯来源的基础上,提出了保护层开采工作面竖向分层治理瓦斯的思路。根据相似模拟结果,分析了采空区瓦斯流动范围和流动范围内孔隙率、风阻分布特征。采用数值模拟分析了Y型通风、Y型通风+采空区埋管及Y型通风+采空区埋管+高抽巷+高位钻场3种瓦斯治理方式下采空区瓦斯体积分数场,结果表明:采空区瓦斯体积分数在竖直方向和水平方向均具有典型的递变特征,距工作面越远,距煤层越高,瓦斯体积分数越大;合适位置的煤层顶板高抽巷对抽采来自上邻近层的瓦斯具有较好的效果,试验条件下高抽巷抽采瓦斯量达到了总量的36.4%~63.6%;沿充填墙的采空区埋管不能完全拦截下层采空区进入沿空巷的采空区瓦斯,随沿空巷长度增加,瓦斯体积分数增大,建议沿空巷长度控制在250 m范围内。  相似文献   

10.
为掌握沿空留巷围岩活动规律,以谢桥矿12418工作面轨道顺槽为工程背景,采用多点位移计及钻孔窥视仪等设备进行实测研究,并结合数值模拟对其进行分析.结果表明:沿空留巷巷道表面围岩变形具有典型的近场效应,留巷前距工作面60 m以外的巷道基本无表面位移,随工作面的推进,巷道表面位移逐渐增大,距工作面10~15m范围内,表面位移变化速率显著增加,留巷后巷道表面位移与留巷前变形趋势类似,但表面位移量较留巷前有明显增加;从顶板钻孔窥视结果可以看出,留巷前仅在孔深2 m处发育单一离层裂隙,留巷后在孔深1.2m、2.4 m、3.8m和5.3m处发育多层离层裂隙,且随滞后工作面距离增加裂隙逐渐增大;尾巷充填体应力在充填材料固结后逐渐升高,并一直维持较高应力状态,因此,巷旁充填体既要确保有一定的强度和刚度,又要有一定的适应变形能力.  相似文献   

11.
确定合理的专用排瓦斯巷参数是确保能否高效治理综放工作面瓦斯积聚及上隅角瓦斯超限现象的关键。结合五阳煤矿7605工作面的实际情况,采用瓦斯运移规律、矿压理论、矿井通风等理论及FLAC3D数值模拟软件,对专用排瓦斯巷的合理层位、距离回风巷的水平距离、巷道断面面积等参数进行了研究。结果表明,专用排瓦斯巷适合布置在岩层垮落带的中下部,距离回风巷的水平距离受巷道等效半径影响,巷道断面面积由通风能力和掘进工程量决定,7605工作面专用排瓦斯巷的3个参数分别为距煤层顶板2.65~6.75 m、距离回风巷水平距离约15 m、巷道断面面积7 m~2。现场应用表明,工作面回采期间瓦斯体积分数维持在0.3%左右,上隅角瓦斯体积分数未发生超限,瓦排巷与工作面连通顺畅,瓦斯治理效果显著。  相似文献   

12.
保持直接顶稳定,降低其突变所引起的危害是沿空留巷顶板控制的关键。基于沿空留巷直接顶力学模型,采用能量平衡分析法,建立直接顶突变的燕尾突变模型。结合某工程实例,阐述沿空留巷直接顶稳定性突变机理,分析巷帮煤体支撑力、巷内支护阻力、充填体支撑力对直接顶稳定性突变的影响。实践表明,增加工作面超前加固范围,巷内支护采用高预应力强力锚杆与锚索等主动支护,巷旁采用膏体充填,能够提高充填体早期强度,延缓直接顶稳定性突变的发生和减轻突变发生的烈度。  相似文献   

13.
为获取走向高抽巷抽放瓦斯的合理参数,依据采空区瓦斯运移基本方程,采用FLUENT数值模拟的方法确定走向高抽巷的最佳抽放位置,即竖直方向高度为综采工作面底板上方20m,倾斜方向距上风巷水平距离为14 m,并在张集矿1111工作面进行现场试验;从试验效果来看:采用FLUENT数值模拟方法确定走向高抽巷位置是可靠的,布置合理的走向高抽巷具有抽放瓦斯浓度高、瓦斯抽放量大和稳定性好的优越性,能有效地解决综采工作面和上隅角瓦斯超限问题,以确保矿井安全生产;抽放参数可在类似矿区加以推广应用,安全效益、经济效益和社会效益明显.  相似文献   

14.
高抽巷现已被广泛用于治理工作面采动裂隙带及采空区瓦斯,而现场实际实施存在一定经验性,影响了高抽巷的瓦斯治理效果。针对现场高抽巷抽采流量低、工作面瓦斯易超限等问题,为提高高抽巷的瓦斯抽采效果,以余吾煤业为例,通过理论计算、现场考察、数值模拟、抽采效果分析,系统地研究了综放面高抽巷抽采瓦斯的布置层位。研究结果表明:综放面顶板冒落带高度约为18 m,裂隙带高度约为40 m,同时结合现场抽采效果分析,高抽巷宜布置在距煤层顶板40 m,与回风顺槽平距30 m处。研究结论对于综放面高抽巷的合理布置、提高瓦斯抽采效果具有一定的借鉴意义。  相似文献   

15.
针对深部沿空留巷软岩底板大变形控制难题,通过理论研究建立了充填体承载力学结构模型。研究认为:大结构的运动以"给定变形"的方式进行控制,沿空留巷巷旁充填体要具有一定可缩性与切顶强度,可采取"补偿机制",充分利用顶板煤体及软岩、底板软岩、预留变形等让压控制方法,维持沿空留巷整体结构稳定;底板同时承受高水平应力及压膜效应顶板载荷传递作用产生了充填体在软岩底板中的下陷及底鼓特征,且充填体承压偏载,实体煤帮与充填体两侧同样呈偏载特征,深部软岩底板沿空留巷底鼓呈分区特征,因留巷两帮载荷集度不同,底鼓呈现一定的偏态特征。  相似文献   

16.
为解决厚煤层开采过程中出现的多种类型空巷影响工作面正常回采等问题,采用现场调研、理论分析等方法归纳空巷的赋存特点和危害,将其划分为沿底完整型、沿顶完整型和垮落型等空巷,并针对不同空巷类型提出不同的治理方法;同时为满足不同施工方案的需要,研发一种硫铝酸盐基多性能注浆材料,进而提出厚煤层综采工作面过空巷综合治理技术;最后分别采用充填支柱支撑、高水充填和深孔注浆的方法对寺河煤矿、成庄煤矿和郭庄煤矿进行空巷治理,并考察治理效果。结果表明:有针对性地治理空巷后,在工作面过空巷期间未发生片帮、冒顶事故,顶板来压正常,保证工作面的安全回采。  相似文献   

17.
宽大护巷煤柱浪费煤炭资源且容易引起矿井灾害。以支承压力分布规律为依据,确定窄煤柱沿空掘巷为大采高条件下最佳布巷方式。基于覆岩大结构的"弧形三角板"B块失稳,是造成窄煤柱沿空护巷控制失败的主要原因,提出定向断裂切顶卸压围岩控制原理,并建立切顶高度数学模型。工业试验表明,切顶卸压窄煤柱沿空送巷回采期间围岩变形量满足下区段工作面生产要求,取得较好的经济技术效果,具有广泛的推广应用价值。  相似文献   

18.
<正>煤矿井下综采工作面过旧巷,是回采过程中非常棘手的一件事,严重困扰着煤矿的安全生产。回采工作面揭露旧巷后,因工作面受超前压力的影响,导致旧巷交叉点处顶板严重破碎,在这种情况下,综采设备经过空巷时,经常会因大面积漏顶、窜渣压住煤机和前溜子而影响推进进度,甚至引发生产安全事故。与此同时,因瓦斯涌出量增  相似文献   

19.
为确定大采高综采面高抽巷的合理位置,以李村煤矿1303工作面为研究背景,采用理论分析、数值模拟及现场监测等研究方法,对1303工作面覆岩裂隙发育特征、高抽巷空间位置对其围岩稳定性与抽采效果的影响规律进行系统研究。研究结果表明:高抽巷宜布置在覆岩裂隙发育区,远离回风巷道采动应力影响的位置;1303工作面覆岩破坏范围随推进距离增加,呈现先急剧增大后趋于稳定的趋势,工作面推进距离为300 m时,裂隙带高度稳定在50 m左右,形成瓦斯抽采的优势通道;高抽巷距离煤层顶板、回风巷越近,越易失稳,不利于长期抽采,综合考虑高抽巷不同位置时的瓦斯抽采效率及围岩稳定性,确定其合理位置分别是距离回风巷平距为35 m,垂距为45 m;结合现场瓦斯浓度监测结果,得出上隅角、工作面、回风巷瓦斯浓度最大值分别为0.42%,0.24%,0.33%,远低于瓦斯超限标准1%,进一步证明高抽巷层位的合理布置,可以提高瓦斯抽采效果。  相似文献   

20.
下保护层开采卸压瓦斯治理技术研究   总被引:4,自引:0,他引:4  
以潘一东矿1252(1)下保护层首采工作面为研究对象,采用分源预测法对下保护层工作面瓦斯涌出情况进行预测。计算结果表明,1252(1)工作面的瓦斯有六成左右来自上邻近13—1煤层,在本煤层回采期间提出了地面钻井、底抽巷穿层钻孔、高位钻场顶板走向钻孔、沿空留巷充填墙埋管等瓦斯治理方案,抽采率达到90%左右,工作面上隅角完全杜绝瓦斯浓度超限现象,保护范围内的13—1煤层的突出危险性也显著降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号