首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penguins may exhibit plasticity in their diving and foraging behaviors in response to changes in prey availability. Chinstrap penguins are dependent predators of Antarctic krill in the Scotia Sea region, but krill populations have fluctuated in recent years. We examined the diet of chinstrap penguins at Livingston Island, South Shetland Islands, in relation to their diving and foraging behavior using time-depth recorders over six breeding seasons: 2002–2007. When krill were smaller, more chinstrap penguins consumed fish. In these years, chinstrap penguins often exhibited a shift to deep dives after sundown, and then resumed a shallower pattern at sunrise. These night dives were unexpectedly deep (up to 110 m) and mean night dive depths sometimes exceeded those from the daytime. The average size of krill in each year was negatively correlated to mean night dive depths and the proportion of foraging trips taken overnight. Based on these patterns, we suggest that when krill were small, penguins increasingly targeted myctophid fish. The average krill size was negatively correlated to the time chinstrap penguins spent foraging which suggests that foraging on smaller krill and fish incurred a cost: more time was spent at sea foraging.  相似文献   

2.
The diving behaviour of king penguins (Aptenodytes patagonicus) was studied on the Falkland Islands, where a small population (ca. 300 fledglings year–1) is located at the geographical limit of their breeding range. King penguins rearing newly hatched chicks were equipped with time-depth recorders before leaving for sea. In total, 20,175 dives >3 m were recorded from 12 birds during 15 foraging trips with a mean duration of 5.7±2.3 days. The majority of the trips was directed up to 500 km to the northeast of the breeding colony in slope waters of, and oceanic waters beyond, the Patagonian shelf. Mean time spent underwater accounted for 42±9% of the foraging trip. Mean dive depth achieved was 55±16 m; maximum dive depth recorded was 343 m. Mean dive duration was 159±25 s; maximum dive duration was 480 s. The mean vertical distance covered was 140±65 km trip–1; and on average birds covered 25 km day–1. Synchronous diving behaviour was observed in two birds for a period of about 24 h after leaving the colony. Dive depth correlated positively with: (1) light intensity, (2) dive duration and (3) vertical velocities, thus confirming previous findings obtained from conspecifics at other breeding sites and indicating comparable diving behaviour. However, separation of dives according to their profile—V-, U-, or W-shaped—revealed significant differences between certain dive parameters. For a given depth range, bottom time was longer and vertical velocities higher in W-dives than in U-dives. This, together with a higher number of W-dives at dawn and dusk, suggests that foraging is more effective during W-dives than U-dives, and during twilight. These findings imply that king penguins have to make more complex decisions, individually and socially, on the performance of the subsequent dive than previously thought.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

3.
Contrasting conditions at-sea are likely to affect the foraging behaviour of seabirds. However, the effect of season on the dive parameters of penguins is poorly known. We report here on an extensive study of the diving behaviour of king penguins (Aptenodytes patagonicus) over the bird's complete annual cycle at the Crozet Islands. Time-depth recorders were used to record dive duration, bottom duration, post-dive interval, ascent rate and descent rate in breeding adults during different seasons in 1995 and 1996. Seasons included summer (n=6, incubation; n=6, chick brooding), autumn and winter (n=5 and n=3, respectively, chick at the crèche stage), and spring (n=4, birds at the post-moult stage). In all seasons dive duration increased with dive depth, but, for a given depth, dives were longer in winter (6.8 min when averaged over the 100-210 m depth layer) than in spring (4.6 min) and summer (4.4 min). The time spent at the bottom of the dives, which probably represents a substantial part of the feeding time, was much longer in winter (2.5 min per dive for dives over the 100-210 m layer) than during other seasons (1.0-1.4 min), i.e. there was a 2.5-fold augmentation for similar diving depths. Ascent and descent rates increased with increasing dive depth, but no difference in the relationships between rates of ascent and descent and dive depth was found among seasons. Furthermore, for all dive depths, ascent and descent rates were independent of the bottom duration. In all seasons post-dive intervals increased with dive duration and with dive depth, but they were longer in spring (2.3 min for dives over the 100-210 m layer) and summer than in autumn and winter (1.6-1.8 min). The diving efficiency decreased with increasing dive depth and was higher in autumn and winter (0.22-0.29) than in summer and spring (0.15-0.18). The large increase in bottom and dive duration from spring to winter is in agreement with the seasonal drop in prey density, with penguins spending more time searching for prey. In contrast, the consistency of the vertical velocity during contrasting conditions at-sea suggests that the transit time to depth is an important component of the foraging behaviour (scanning of the water column) that is independent of the prey availability. The time budget of the penguins during diving in a fluctuating environment appears to vary primarily during the bottom phase of the dives, with bottom duration increasing with diminishing prey supplies, while post-dive intervals shorten in the same time.  相似文献   

4.
Little Penguins, Eudyptula minor, breed in several small colonies in New Zealand and Australia. In this study, we compare the birds’ diving performances at different sites situated throughout their breeding range. Environmental conditions and breeding success vary drastically amongst colonies, but all birds feed on similar types of prey and face similar limitations on their foraging range. We examined several diving parameters and calculated the proportion of foraging zone available during breeding to examine whether oceanographic and geographic factors in the foraging zone can explain variations in diving behaviour and fledging success among the different colonies. In colonies with high fledging success, Penguin Island and Oamaru, penguins made shallow dives <50 m depth and had lower diving effort. More than 90% of the foraging zone was in waters <50 m depth in these colonies. Motuara Island also has shallow waters with 95% <50 m depth, but the fledging success was low. Phillip Island has only 42% of waters <50 m and comparatively low fledging success. Thus, penguins dived deeper and showed a higher diving effort in colonies with lower fledging success (Motuara Island and Phillip Island), indicating that they were disadvantaged compared to conspecifics from other colonies that dived shallower and with a lesser diving effort. We concluded that bathymetry is an important factor, but not the only one, which influences fledging success.  相似文献   

5.
Chinstrap, Pygoscelis antarctica, and gentoo, P. papua, penguins are sympatric species that inhabit the Antarctic Peninsula. To evaluate differences in the foraging habitat of these two species, we recorded their foraging locations and diving behavior using recently developed GPS-depth data loggers. The study was conducted on King George Island, Antarctica during the chick-guarding period of both species, from December 2006 to January 2007. The area used for foraging, estimated as the 95% kernel density of dive (>5 m) locations, overlapped partially between the two species (26.4 and 68.5% of the area overlapped for chinstrap and gentoo penguins, respectively). However, the core foraging area, estimated as the 50% kernel density, was mostly separate (12.8 and 25.0% of the area overlapped for chinstrap and gentoo penguins, respectively). Chinstrap penguins tended to use off-shelf (water depth > 200 m) regions (77% of the locations for dives >5 m), whereas gentoo penguins mainly used on-shelf (water depth < 200 m) areas (71% of dive locations). The data on foraging locations, diving behavior, and bathymetry indicated that gentoo penguins often performed benthic dives (28% of dives >5 m), whereas chinstrap penguins almost always used the epipelagic/mid-water layer (96% of dives >5 m). Diving parameters such as diving bottom duration or diving efficiency differed between the species, reflecting differences in the use of foraging habitat. The diving parameters also suggested that the on-shelf benthic layer was profitable foraging habitat for gentoo penguins. Conversely, the relationship between trip duration, date, and stomach content mass suggested that the chinstrap penguins went further from the colony to forage as the season progressed, possibly reflecting a reduction in prey availability near the colony. Our results suggest that chinstrap and gentoo penguins segregated their foraging habitat in the Antarctic coastal marine environment, possibly due to inter- and intra-specific competition for common prey resources.  相似文献   

6.
The pattern and characteristics of diving in 14 female northern rockhopper penguins, Eudyptes chrysocome moseleyi, were studied at Amsterdam Island (37°50′S; 77°31′E) during the guard stage, using electronic time–depth recorders. Twenty-nine foraging trips (27 daily foraging trips and two longer trips including one night) with a total of 16 572 dives of ≥3 m were recorded. Females typically left the colony at dawn and returned in the late afternoon, spending an average of 12 h at sea, during which they performed ∼550 dives. They were essentially inshore foragers (mean estimated foraging range 6 km), and mainly preyed upon the pelagic euphausiid Thysanoessa gregaria, fishes and squid being only minor components of the diet. Mean dive depth, dive duration, and post-dive intervals were 18.4 m (max. depth 109 m), 57 s (max. dive duration 168 s), and 21 s (37% of dive duration), respectively. Descent and ascent rates averaged 1.2 and 1.0 ms−1 and were, together with dive duration, significantly correlated with dive depth. Birds spent 18% of their total diving time in dives reaching 15 to 20 m, and the mean maximum diving efficiency (bottom time:dive cycle duration) occurred for dives reaching 15 to 35 m. The most remarkable feature of diving behaviour in northern rockhopper penguins was the high percentage of time spent diving during daily foraging trips (on average, 69% of their time at sea); this was mainly due to a high dive frequency (∼44 dives per hour), which explained the high total vertical distance travelled during one trip (18 km on average). Diving activity at night was greatly reduced, suggesting that, as other penguins, E. chrysocome moseleyi are essentially diurnal, and locate prey using visual cues. Received: 9 December 1998 / Accepted: 3 March 1999  相似文献   

7.
During the El Niño of 1982/1983, the Humboldt penguin population diminished dramatically in the whole distributional area of the species. Recovery of the population was slow since 1983 and it has been suggested that large numbers of Humboldt penguins die at sea, entangled in nets, or starve to death, even during non-“El Niño” years. We were able to determine for the first time, how Humboldt penguins on Pan de Azúcar Island (26°S; 72°W) utilize their marine habitat and where their feeding areas lie. For this purpose we employed two streamlined Argos satellite transmitters during the 1994/1995 and 1995/1996 breeding seasons, respectively. Mean travelling speed of Humboldt penguins during foraging trips was 0.94?m s?1 and 50% of bird positions were located within 5?km of the island (90% within 35?km). Total area covered by Humboldt penguins foraging from Pan de Azúcar Island was 12?255?km2. Satellite transmitters also recorded dive duration; penguins spent on average 7.8 to 9?h diving per foraging day but showed no preferences for particular feeding areas. Mean daily dive durations (4-d mean) recorded during the 1994/1995 breeding season were positively correlated between birds. Significant correlation between dive duration and sea surface temperature anomalies and negative correlation between dive duration and fishery landings at nearby Caldera harbour indicate that the 1994/1995 increase in foraging effort was a response to deteriorating prey availability. Sea surface temperatures during the 1995/1996 breeding season were colder than average, and we observed no trends in bird diving activities.  相似文献   

8.
The foraging ecology of seven Gentoo penguins,Pygoscelis papua, breeding at Ardley Island, Antarctica was studied using animal-attached devices which recorded swimming speed, heading and dive depth. Reconstruction of the foraging routes by vectorial analysis of the data indicated that at no time did the birds forage on the sea bed. Swimming speed was relatively constant at 1.7 m s-1, but rates of descent and ascent in the water column during dives increased with increasing maximum dive depth due to changes in descent and ascent angles. The amount of time spent discending and ascending in the water column increased with maximum dive depth as did the duration spent at the point of maximum depth. Dive profiles were essentially either U-shaped (flat-bottomed dives), or V-shaped (bounce dives). Development of a model based on simple probability theory indicated that the optimal dive profile to maximize the chances of prey acquisition depends on vertical prey distribution and on the visual capabilities of the birds with respect to descent and ascent angles.  相似文献   

9.
The at-sea behaviour of marine top predators provides valuable insights into the distribution of prey species and strategies used by predators to exploit patchily distributed resources. We describe the water column usage and dive strategies of female southern elephant seals from Marion Island tracked between 2004 and 2008. Dives representing increases in forage effort were identified using a method that combines dive type analyses and the calculation of relative amounts of time that animals spend in the bottom phases of dives. Results from this analysis indicate that female elephant seals from Marion Island tend to display lower levels of forage effort closer to the island and display intensive opportunistic forage bouts that occur at a minimum distance of approximately 215 km from the island. Females from Marion Island dived deeper and for longer periods of time, compared to females from other populations. Most animals displayed positive diel vertical migration, evidently foraging pelagically on vertically migrating prey. A few animals displayed periods of reverse (negative) diel vertical migration, however, diving to deeper depths at night, compared to daytime. This behaviour is difficult to explain and prey species targeted during such periods unknown. Our results illustrate plasticity in foraging behaviour of southern elephant seals, as well as inter-population differences in forage strategies.  相似文献   

10.
In diving seabirds, sexual dimorphism in size often results in sex-related differences of foraging patterns. Previous research on Magellanic penguins, conducted during the breeding season, failed to reveal consistent differences between the sexes on foraging behavior, despite sexual dimorphism. In this paper, we tested the hypothesis that male and female Magellanic penguins differ in diet and foraging patterns during the non-breeding period when the constraints imposed by chick rearing activities vanish. We used stable isotope ratios of carbon and nitrogen in feather and bone to characterize the diet and foraging patterns of male and female penguins in the South Atlantic at the beginning of the 2009–2010 and 2010–2011 post-breeding seasons (feathers) and over several consecutive breeding and migratory seasons (bone). The mean δ13C and δ15N values of feathers showed no differences between the sexes in any of the three regions considered or in the diet composition between the sexes from identical breeding regions; however, Bayesian ellipses showed a higher isotopic niche width in males at the beginning of the post-breeding season. Stable isotope ratios in bone revealed the enrichment of males with δ13C compared with females across the three regions considered. Furthermore, the Bayesian ellipses were larger for males and encompassed those of females in two of the three regions analyzed. These results suggest a differential use of winter resources between the sexes, with males typically showing a larger diversity of foraging/migratory strategies. The results also show that dietary differences between male and female Magellanic penguins may occur once the constraints imposed by chick rearing activities cease at the beginning of the post-breeding season.  相似文献   

11.
Knowledge on how divers exploit the water column vertically in relation to water depth is crucial to our understanding of their ecology and to their subsequent conservation. However, information is still lacking for the smaller-bodied species, due mostly to size constraints of data-loggers. Here, we report the diving behaviour of a flying diving seabird, the Cape Cormorant Phalacrocorax capensis, weighing 1.0–1.4 kg. Results were obtained by simultaneously deploying small, high resolution and high sampling frequency GPS and time-depth loggers on birds breeding on islands off Western South Africa (34°S, 18°E) in 2008. In all, dive category was assigned to all dives performed by 29 birds. Pelagic dives occurred almost as frequently as benthic dives. Pelagic dives were shallow (mean: 5 m) and took place over seafloors 5–100 m deep. Benthic dives were deeper, occurring on seafloors mainly 10–30 m deep. Dive shape was linked to dive category in only 60% of dives, while the descent rate, ascent rate and bottom duration/dive duration ratio of a dive best explained its dive category. This shows that only the concomitant use of tracking and depth tags can adequately classify diving strategies in a diver like the Cape Cormorant. Diet was mainly Cape Anchovy Engraulis encrasicolis, suggesting that birds probably displayed two contrasted strategies for capturing the same prey. Flexible foraging techniques represent an important key to survival inside the highly productive but heterogeneous Benguela upwelling ecosystem.  相似文献   

12.
Gentoo penguins Pygoscelis papua show considerable plasticity in their diet, diving, and foraging behaviors among colonies; we expected that they might exhibit similar variability over time, at a single site, since flexible foraging habits would provide a buffer against changes in prey availability. We examined interannual changes in the foraging strategies and diet of gentoo penguins in the South Shetland Islands, Antarctica, over 5 years with variable prey abundance. Antarctic krill Euphausia superba was the primary diet item, and fish the secondary, though the importance of these items varied among years. Diving behavior also varied over time: different dive depth distributions were observed among years. Nonetheless, chick-rearing success remained relatively constant, indicating that gentoo penguins were able to maintain chick provisioning by altering their foraging strategy among years. Variable abundance of krill in the region did not have observable impacts on the diet, foraging behaviors or chick-rearing success of gentoo penguins. We suggest that foraging plasticity may be one reason that gentoo penguin populations have remained stable in the region, while their congeners (P. antarctica and P. adeliae) with less flexible foraging strategies have declined.  相似文献   

13.
Recording the activity of animals as they migrate or forage has proven hugely advantageous to understanding how animals use their environment. Where animals cannot be directly observed, the problem remains of how to identify distinct behaviours that represent an animal’s decision-making process. An excellent example of this problem is that of foraging penguins, which travel to sea to find prey to provision their young. Without direct sampling of the prey field, we cannot calibrate patterns of movement with prey capture, and therefore we cannot determine how different activities link to decision-making. To overcome this, we use a hidden markov model (HMM), which is a machine-learning technique that seeks to identify the underlying states of a system from observable outputs. We apply HMM to determine classes of behaviour from repetitive dives. We take dive data from 103 breeding macaroni penguins at Bird Island, South Georgia, for which we have measures of weight gain over a trip. We identify two classes of behaviour; those of short-shallow and long-deep dives. Using these two behaviours, we calculate the transition probabilities between these states and analyse these data to determine what predicts variation in the transition probabilities. We found that the stage of reproduction during a season, the sex and year of an individual influenced the probability of transition between long-deep and short-shallow sequential dives. We also found differences in the hourly transition rates between the four reproductive stages (incubation, broodguard, crèche and premoult) over a daily cycle. We conclude that this application of HMMs for behavioural switching is potentially useful for other species and other types of recorded behaviour.  相似文献   

14.
Foragers show adaptive responses to changes within their environment, and such behavioural plasticity can be a significant driving force in speciation. We investigated how lactating Antarctic fur seals, Arctocephalus gazella, adapt their foraging within two contrasting ecosystems. Location and diving data were collected concurrently, between December 2003 and February 2004, from 43 seals at Bird Island, where krill, Euphausia superba, are the main prey, and 39 at Heard Island, where mostly fish are consumed. Seals at Heard Island were shorter and lighter than those at Bird Island and they spent longer at sea, dived more frequently and spent more time in the bottom phase of dives. Generalized additive mixed effects models showed that diving behaviours differed between the islands. Both populations exploited diel vertically migrating prey species but, on average, Heard Island seals dived deeper and exceeded their estimated aerobic dive limits. We propose that the recovery of the Heard Island population may be limited by the relative inaccessibility and scarcity of food, whereas at Bird Island, the presence of abundant krill resources helps sustain extremely high numbers of seals, even with increased intra- and inter-specific competition. Both populations of fur seals appear to be constrained by their physiological limits, in terms of their optimal diving behaviour. However, there does appear to be some flexibility in strategy at the level of trip with animals adjusting their time at sea and foraging effort, in order to maximize the rate of delivery of energy to their pups.  相似文献   

15.
The ontogeny of diving and foraging behavior of northern fur seal pups from a stable population on Bering Island, Russia, was recorded with animal-borne instruments during their first few months at sea, a critical period during their first year at sea. Thirty-five pups were instrumented with satellite-linked time-depth recorders and stomach temperature pills. Diving occurred predominantly at night with deeper and longer dives as the pups matured. Mean dive depths were correlated with lunar illumination, whereas mean dive durations were also correlated with time of day and sex. Foraging success did not differ between sexes, and there was no relationship between meal size (as indicated by feeding event duration and minimum stomach temperature) and lunar illumination fraction or maximum foraging depth. Although most pups were able to successfully forage within 3 days of starting their migration, the number of feeding events recorded each day remained low (mean 1.6 events day?1). There was no indication of an appreciable increase in meal size after the first 2 weeks of the migration despite an increase in dive frequency and depth. The results are consistent with observations that pups do not gain mass during their first year and emphasize the risk of starvation from infrequent foraging in cold water.  相似文献   

16.
Seasonally breeding predators, which are limited in the time available for provisioning young at a central location, and by the fasting abilities of the young, are likely to maximize energy delivery to the young by maximizing the rate of energy delivery averaged over the whole period of investment. Reduction in food availability or increased foraging costs will alter the optimal behavior of individuals. This study examined the behavioral adaptations of a diving predator, the Antarctic fur seal, to increased foraging costs during lactation. One group of mothers (n=5, treatment) was fitted with additional drag to increase the cost of transport in comparison with a control group (n=8). At the scales of the individual dives, the treatment group made more shorter, shallower (< 30 m) dives. Compensation for slower swimming speeds was achieved by diving at a steeper angle. Overall, diving behavior conformed to several specific theoretical predictions but there were also departures from theory, particularly concerning swimming speed during diving. Diving behavior appears to be adjusted to maximize the proportion of time spent at the bottom of dives. At the scale of diving bouts, no difference was observed between the treatment and control groups in terms of the frequency and duration of bouts and there was also no difference between the two groups in terms of the proportion of time spent diving. At the scale of complete foraging cycles, time taken to return to the pup was significantly longer in the treatment group but there was no difference in the rate of delivery of energy (measured from pup growth rate) to the pups in each group. Since mothers in the treatment group did not use significantly more body reserves, we conclude that behavioral adjustments at the scale of individual dives allowed mothers in the treatment group to compensate for the additional foraging costs. Pup growth rate appears to be less sensitive to the foraging conditions experienced by mothers than foraging trip duration. Received: 14 June 1996 / Accepted after revision: 16 November 1996  相似文献   

17.
Radl  A.  Culik  B. M. 《Marine Biology》1999,133(3):381-393
Marine Biology - During the breeding season 1996/97 we compared the foraging and diving behaviour of adult Magellanic penguins (Spheniscus magellanicus), growth rates of their chicks and their...  相似文献   

18.
In the heterogeneous marine environment, predators can increase foraging success by targeting physical oceanographic features, which often aggregate prey. For northern fur seals (Callorhinus ursinus), two prevalent oceanographic features characterize foraging areas during summer in the Bering Sea: a stable thermocline and a subsurface “cold pool”. The objective of this study was to examine the influence of these features on foraging behavior by equipping fur seals from St. Paul Island (Alaska, USA) with time-depth recorders that also measured water temperature. Foraging bout variables (e.g., mean dive depth and percent time diving in a bout) were compared with respect to subsurface thermal characteristics (thermocline presence and strength and cold pool presence). Over 74% of bouts occurred in association with strong thermoclines (temperature change > 5°C). Few differences were found for dive behavior in relation to the presence of a thermocline and the cold pool, but for epipelagic bouts, a strong thermocline resulted in increased bottom times, number of dive wiggles, and percent time diving when compared to moderate thermoclines. There was also a positive relationship between mean dive depth and thermocline depth. The combination of increasing foraging effort in areas with strong thermoclines and diving to depths closely related to the thermocline indicates this feature is important foraging habitat for northern fur seals and may act to concentrate prey and increase foraging success. By recognizing the environmental features northern fur seals use to find prey, managers will be better equipped to identify and protect foraging habitat that is important to northern fur seals, and possibly other marine predators in the Bering Sea.  相似文献   

19.
A complex interaction of biotic and abiotic factors influences animal foraging activity. It is often difficult to understand which factors may affect animals’ foraging and how it is affected. For instance, whereas the effect of sexual dimorphism on foraging activity has been reported in several species, little is known of the complex interactions between variables acting at a finer scale, e.g. the variability of body mass within a sex. Evaluating the importance of these finer scale factors is also essential to the understanding of foraging behaviour. We propose here a simple approach by applying principal component analysis (PCA) in a novel way to examine relationships between biotic and abiotic factors affecting foraging behaviour of top predators. We studied female little penguins (Eudyptula minor) of known age, carrying miniature accelerometers during the guard stage of breeding. Surprisingly, the body mass of the females did not influence any of the foraging parameters, but females foraging later in the breeding season dived shallower and more often, showing a strong correlation with laying date. Similarly, the diving effort of females was greater with increasing chick age within the same breeding stage. These results indicate that for female little penguin, the relationship between changes in prey availability and hunting effort can change at a fine scale, within a breeding stage. Therefore, any analysis of little penguin foraging behaviour during breeding should consider the timing in relation to the breeding season. We encourage researchers to develop the use of this PCA approach as it could help clarify the complexity of the underlying mechanisms determining foraging activity and we propose that it should be used as a first step of foraging behaviour analysis, before examining a particular relationship.  相似文献   

20.
Foraging strategies and prey encounter rate of free-ranging Little Penguins   总被引:4,自引:0,他引:4  
There is little information on the effort put into foraging by seabirds, even though it is fundamental to many issues in behavioural ecology. Recent researchers have used changes in the underwater cruising speed of penguins to allude to prey ingestion since accelerations are thought to reflect the encounter and pursuit of prey. In this study, we attached minute accelerometers, to determine flipper beat frequency as a proxy for prey pursuit, to Little Penguins Eudyptula minor foraging in shallow waters in Western Australia. During diving, Little Penguins flapped continuously and at a regular pace of 3.16 Hz while descending the water column and throughout the bottom phase of most dives. However, the frequency and amplitude of wingbeats increased transitorily, reaching 3.5–5.5 Hz, during some dives indicating prey pursuit. Pursuit phases lasted a mean of 2.9±3.3 s and occurred principally during the bottom phases of dives (75.4%). Most dives in all birds (86%) had a clear square-shaped depth profile indicating feeding activity near the seabed in the shallow waters of the bays. Hourly maximum depth, time spent underwater, percentage of dives with pursuit events and catch per unit effort showed an overall increase from zero at ca. 0500 h to a maximum during the hours around mid-day before decreasing to zero by 1900 h. During pursuit phases, Little Penguins headed predominantly downward, probably using the seabed to assist them in trapping their prey. In the light of our results, we discuss depth use by Little Penguins and their allocation of foraging effort and prey capture success as a function of environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号