首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
采用好氧生物降解实验,考察了鼠李糖脂对底泥/河水混合体系中17α-炔雌醇(EE2)的生物降解特性的影响。结果表明,随体系中鼠李糖脂浓度的增加,EE2的可生物降解性明显呈大幅度地提高。HPLC-PDA扫描检测结果表明,EE2降解过程中主要产生极性和生物可降解性差异均较大的3种代谢中间产物。外加葡萄糖投加量足够时,外加碳源可以转变成为微生物降解有机物的共代谢基质。鼠李糖脂影响及作用下,微生物摄取吸收有机物的模式可以有多种。鼠李糖脂作为外源添加物,其共代谢效应有可能促使有机物增溶胶束直接被微生物菌体利用。  相似文献   

2.
研究了生物表面活性剂鼠李糖脂对DDTs在水相中的增溶作用,对白腐真菌Phlebia lindtneri GB1027生长的影响以及对该菌株降解DDTs的影响。结果表明,高于临界胶束浓度(CMC)的鼠李糖脂可明显增加各DDTs的表观溶解度,其中对4,4’-DDD的增溶效果最好。低浓度(<0.05 g/L)的鼠李糖脂会促进白腐真菌在PDB培养基中的生长,而高于0.1 g/L浓度的鼠李糖脂则对菌株的生长产生一定的抑制作用,最高抑制率可达到42%。在0.02~0.5 g/L浓度范围内,鼠李糖脂可促进白腐真菌对DDTs的降解效果,且降解率随着鼠李糖脂浓度的增加而增加。在0.5 g/L的鼠李糖脂添加体系培养14 d后,白腐真菌对4,4’-DDT、2,4’-DDT、4,4’-DDD和2,4’-DDD的降解率分别提高了24.0%,22.8%,25.0%和22.0%。而鼠李糖脂浓度进一步升高至1.0 g/L时,由于菌株的生长受到抑制从而导致对DDTs降解率的下降。  相似文献   

3.
以尖刺拟菱形藻[Pseudo-nitzschiapungens(PS0201-01)]、双突角毛藻(ChaetocerosDidymus)、柔弱角毛藻(Chaertocerosdebilis)、旋链角毛藻(Chaetoceroscurvisetus)和新月菱形藻(Nitzschiaclosterium)5种硅藻为研究对象,探讨了铜绿假单胞菌产鼠李糖脂类生物表面活性剂对海洋硅藻生长的影响.结果表明,当鼠李糖脂的浓度从0.5mg/L至10.0mg/L逐渐递增时,对5种硅藻的生长表现出了不同程度的抑制作用.通过各海洋硅藻脂肪酸组成的差异分析了鼠李糖脂对不同硅藻生长抑制作用具有差异的原因.结果表明,这种差异性与各海洋硅藻生物膜的脂肪酸组成不同相关,海洋硅藻的各种多不饱和脂肪酸的含量越低,相对应的96h-EC50值越低,鼠李糖脂对其生长抑制作用越强,反之亦然.进一步探讨了鼠李糖脂抑藻效果与分属不同门类的多种海洋微藻的脂肪酸组成的关系,确证了鼠李糖脂的选择性抑藻作用与不同海洋微藻生物膜的脂肪酸组成不同相关.  相似文献   

4.
鼠李糖脂与疏水底物及其降解菌的相互作用   总被引:1,自引:1,他引:1  
通过鼠李糖脂对假单胞菌GP3A菌株降解芘的增溶和降解实验,研究了在鼠李糖脂作用下,菌体细胞表面疏水性和脂多糖含量的变化、菌体表面基团与生物表面活性剂分子的键合作用以及相应疏水底物的增溶和降解.结果表明,当鼠李糖脂浓度高于其临界胶束浓度(60mg·L^-1)时,能显著增加疏水底物芘的表观溶解度;生物表面活性剂能通过溶出细...  相似文献   

5.
利用液相色谱/质谱联用仪(HPLC-ESI-MS)分析了石油降解菌Pseudomonas aeruginosa W3以甘露醇为碳源所产鼠李糖脂生物表面活性剂的组成.结果表明,所产鼠李糖脂共检出6种主要的鼠李糖脂同系物,均由1~2个鼠李糖分子和1~2个含β羟基的碳链长度为8~12的饱和或不饱和脂肪酸分子构成,其主要组分的m/z为649.6和621.5,对应的结构是RhaRhaC10C10和RhaRhaC8C10,分别占总检出物质量的57%和15.5%.该鼠李糖脂混合物中双鼠李糖脂的含量达到90%,是目前报道的双鼠李糖脂含量较高的菌株之一.该糖脂类生物表面活性剂可将水的表面张力从71.4mN.m-1降到30.5mN.m-1,临界胶束浓度为48mg·L-1,在高温、高盐度及高pH等极端环境下,仍能保持较高的表面活性和乳化能力,在生物修复中具有潜在应用价值.  相似文献   

6.
通过好氧降解实验研究了生物表面活性剂鼠李糖脂对1株铜绿假单胞菌(Pseudomonas Aeruginosa)降解颗粒有机质的影响,着重探讨了其作用方式,并与TritonX-100和SDS等2种化学表面活性剂作了对比.结果表明,浓度高于临界胶束浓度的鼠李糖脂在基质表面的等温吸附呈线性规律.鼠李糖脂在基质和微生物表面的吸附使菌体在基质表面的吸附性能减弱.鼠李糖脂和2种化学表面活性剂的物化作用使基质水分得以较长时间地保持,并加强了有机质在基质液相中的分散.在鼠李糖脂的作用下,有机质的降解从颗粒表面转移到液相,降解方式发生了改变.通过以上作用,鼠李糖脂促进了微生物的生长和有机质的降解.SDS和TritonX-100对有机质颗粒的降解也产生了一定的促进作用.  相似文献   

7.
通过对比实验考察了在罐状批式生物反应装置中由一株铜绿假单胞菌产生的生物表面活性剂鼠李糖脂的发酵液对蔬菜基质好氧生物降解过程的影响。结果显示鼠李糖脂发酵液能够在一定程度上促进蔬菜基质的降解(尤其是在降解过程的中期和中后期)。加速的原因可能是鼠李糖脂对基质液相的水分保持功能以及对有机物微粒在液相中的分散加强作用。鼠李糖脂本身在降解过程的末期也基本被分解完全。  相似文献   

8.
采用生物表面活性剂鼠李糖脂(rhamnolipid,RL)构建RL/异辛烷/正己醇的逆胶束体系,并研究了该体系中纤维素酶后萃过程的影响因素.分别考察了后萃水相pH值、振荡时间、离子种类和强度以及添加短链醇对纤维素酶的后萃率和酶活回收率的影响.结果表明,后萃水相最佳pH值为7.0,振荡时间以30 min为最佳,后萃水相中离子强度以0.15 mol·L-1KCl最佳,正丁醇的最佳添加量为2%.在最佳实验条件下,纤维素酶的后萃率和酶活回收率分别可以达到76.22%和93.39%.生物表面活性剂RL构建的逆胶束体系对纤维素酶的后萃效果较佳,且RL具有高生物降解性,低临界胶束浓度等优点,应用前景广阔.  相似文献   

9.
该研究采用Tween 80、Triton X-100、十二烷基硫酸钠(SDS)、十二烷基苯磺酸钠(SDBS)、槐糖脂(SL)、烷基糖苷(AG)6种常用的表面活性剂与鼠李糖脂(RL)进行复配,研究不同复配表面活性剂对芘增溶效率的影响.结果 发现:Triton X-l 00、Tween 80可以显著提高RL对芘的增溶效率;低浓度(<600 mg/L) SL与RL复配也可促进芘溶解;AG与鼠李糖脂复配对芘增溶效率影响较小;加入SDS和SDBS则抑制RL对芘的增溶效率.通过Clint等模型分析发现,鼠李糖脂与Triton X-100复配后分子间产生协同效应,当两者质量比为9:1时对芘的增溶效率较高并且具有良好的pH稳定性,优于其他复配体系.该研究可为鼠李糖脂在多环芳烃增溶应用中的推广提供理论依据.  相似文献   

10.
研究了鼠李糖脂对NY3菌表面特性及其降解烃类物质的影响作用.结果表明,与未加鼠李糖脂相比,原油含量为1000 mg·L-1,鼠李糖脂100 mg·L-1时,生长24和48 h,NY3菌细胞净生长量分别提高8.60和6.68倍,且产酸明显,原油中正二十六烷至正三十三烷降解效率可提高约60%.分别以LB培养基和十六烷为唯一碳源的无机盐培养基生长的NY3菌体(OD400nm=1.68±0.08),与100 mg·L-1的鼠李糖脂作用1.5h,菌体表面疏水性分别增加32%、6%;且以LB培养基生长的NY3菌细胞,在鼠李糖脂和十六烷存在下作用90 min,菌细胞所积聚的正十六烷量比未加鼠李糖脂时增加了1.10 nmol·mg-1干菌,说明鼠李糖脂能加快疏水性有机物的传质速度.红外光谱分析结果表明,与未加鼠李糖脂相比,鼠李糖脂使菌体细胞中疏水性脂肪链的相对含量明显增加.因此,鼠李糖脂能增加菌体的表面疏水性,加快烃类的传质速率,从而促进NY3菌对烃的降解.  相似文献   

11.
营养盐对湄洲湾海洋细菌生长及降解石油烃的影响   总被引:4,自引:0,他引:4  
测定从湄洲湾海域分离的烃细菌在添加和不添加N、P营养盐的海水培养基的生物量及对原油和纯烃的降解作用.结果表明,营养盐对不同菌株的生长及代谢有不同的影响.添加N、P营养盐,试验菌PF-6(Pseudomonas fluorescens 6)的生物量增大,而PA-32(P.aeruginosa 32) 的生物量却减少.在初始原油浓度均为1g/L的摇瓶试验中,添加N、P营养盐培养6d,PF-6菌与PA-32菌的除油率分别为25%及26%,而不添加N、P营养盐时,PF-6菌与PA-32菌的除油率分别为21.4%及36.3%.经气相色谱测定,在以正十六烷和萘两种纯烃组成的培养基,营养盐对两个菌株降解正十六烷的影响仍然不同,但在不添加N、P营养盐时,两个菌株对萘均有较高的降解率.无需添加N、P营养盐能正常生长并降解石油烃的菌株,在海洋油污的生物修复中具有应用前景.  相似文献   

12.
Tween 80和鼠李糖脂对稻草酶解的影响   总被引:4,自引:1,他引:4  
莫丹  袁兴中  曾光明  刘佳 《环境科学》2008,29(7):1998-2004
采用纤维素酶促水解的方法,以稻草为底物,探讨了添加化学表面活性剂Tween 80和生物表面活性剂鼠李糖脂对酶解过程的糖产率、酶稳定性、纤维素转化率的作用以及对酶动力学特征和酶在纤维素上吸附的影响.结果表明,不同浓度的Tween 80和鼠李糖脂对稻草酶解有不同程度的促进,添加0.016%和0.048%Tween 80使糖产率分别提高18.07%和11.98%,而添加0.01%和0.03%鼠李糖脂使糖产率分别增加了23.01%和22.16%,相比较鼠李糖脂的效果更好.表面活性剂能有效增强酶的稳定性,添加高浓度表面活性剂的酶稳定性优于添加低浓度表面活性剂,添加浓度为0.048%的Tween 80得到最高相对CMCA(羧甲基纤维素酶活)108.06%和最高相对FPA(滤纸酶活)80.26%.表面活性剂能提高酶解反应的纤维素转化率,而且添加鼠李糖脂的转化率明显高于Tween 80.表面活性剂不仅能够提高最大反应速度并使米氏常数变大,而且显著地降低了纤维素酶在纤维素上的吸附.  相似文献   

13.
曲良 《环境科学与管理》2011,36(12):73-76,127
文章综述了鼠李糖脂生物表面活性剂的研究进展包括其化学结构、产生茵及其发酵影响因素,特别讨论了鼠李糖脂在石油污染修复中的应用,并对未来鼠李糖脂发酵工艺中低成本生产原料的筛选开发和对其使用所造成的环境影响进行评价的研究方向进行了展望。  相似文献   

14.
包气带土层中石油污染物生物降解的温度效应   总被引:7,自引:2,他引:7  
张旭  李广贺  黄巍 《环境科学》2001,22(4):108-110
温度是影响包气带土层中石油污染物自然衰减的重要因素.通过室内模拟实验对油污土层微生物降解的温度效应进行研究,并预测不同温度下石油污染物的半衰期.结果表明,温度对生物反应速率常数的影响符合关系式K=3145exp(-5233/T).根据该式对石油污染物的半衰期进行预测,得出5℃、10℃、20℃和30℃时包气带土层中石油污染物的半衰期分别为1499 d、1075 d、572 d和317 d.  相似文献   

15.
铜绿假单胞菌S6分泌的生物表面活性剂特性   总被引:6,自引:3,他引:6  
研究了1株铜绿假单胞菌S6(Pseudomonas aeruginosa S6)分泌的生物表面活性剂的理化性质.该生物表面活性剂的临界胶束浓度为50mg·L-1,此时其表面张力为29.3mN·m-1.pH值对S6产表面活性剂有一定影响,在中性及弱碱性条件下,S6长势较好且表面活性剂表面张力较低.该生物表面活性剂对菲具有非常明显的增溶效应,使水中菲的溶解度增加了约23倍.原油的加入有利于S6产表面活性物质.与原油的相互作用说明该生物表面活性剂能够乳化原油且维持乳化液稳定性于80%以上;原油浓度为6%~8%时,能达到最佳乳化效果.HPLC-ESI-MS分析检出该生物表面活性剂含有13种鼠李糖脂同系物.  相似文献   

16.
从厌氧驯化的活性污泥中筛选到一株高活力苯酚降解菌,鉴定为白假丝酵母(Candida albicans),命名为PDY-07。该菌株能以苯酚为唯一碳源和能源。菌株PDY-07降解苯酚的最佳温度为35℃;pH值范围为6.9~7.1;菌株PDY-07耐受苯酚的能力可以达到2600mg/L。  相似文献   

17.
通过菌种筛选和吸附降解特性实验,分离三苯基锡(TPhT)的吸附降解菌,研究TPhT的微生物吸附降解性能和机制.结果表明,肺炎克雷伯氏菌(Klebsiella pneumoniae)对TPhT具有良好的吸附降解效果.0.3~3.0 g.L-1菌体在2.0 h内对3 mg.L-1TPhT的吸附率均超过70%,最高达97.9%;5 d内对TPhT的降解率为26.4%~54.6%;其离体胞内酶2.0 h内对TPhT的降解率也高达28.1%~77.8%.K.pneumoniae对TPhT的降解发生在细胞内,降解速率的增长趋势随时间的延长而变缓,胞内酶在细胞体外对TPhT的降解在2.0 h时达最大值,完整细胞在第1 d对TPhT的降解速率最快,而第2~5 d的变化趋势较平稳.菌体对TPhT的吸附降解过程包括了TPhT的细胞表面吸附、体内外双向运输和体内降解过程.其中,表面吸附的TPhT含量随时间的增长呈现线性增加的趋势;细胞内部的TPhT含量在前3 d快速下降,从55.9%降至17.0%,之后则趋于稳定;上清液中的TPhT含量变化趋势则与细胞内部的相反.  相似文献   

18.
生物表面活性剂的优化生产及发展前景   总被引:4,自引:1,他引:4  
生物表面活性剂(Bio-surfactant)是由微生物产生的具有高表面活性的生物分子。由于其对生态系统无毒害作用,且可生物降解,因此,在提高原油产收率和环境污染治理等各方面得到了广泛应用。然而能否大幅度提高生物表面活性剂发酵产量是其能否实现商业化的一个首要问题。为此文章纵观了目前提高产量的研究重点,并对应用诱变育种和构建基因工程菌手段提高产量的发展前景作了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号