共查询到19条相似文献,搜索用时 92 毫秒
1.
采集了春季南昌市城市和森林地区的大气PM2.5样品及潜在大气氨基酸排放源(植物和土壤)样品,测定并分析了样品中结合氨基酸(CAAs)的浓度、组成及甘氨酸(Gly)的氮同位素值.结果表明,城市和森林地区PM2.5中总CAAs的浓度分别为0.507~3.912和0.497~2.647nmol/m3.通过对PM2.5中CAAs组成占比分析发现,城市和森林地区CAAs组成成分相似,其中Pro、Gly、Ala、Leu和His是PM2.5中丰富的CAAs物种.结合Gly的氮同位素值可知,城市地区(+0.62‰~+22.67‰)和森林地区(+1.99‰~+23‰) PM2.5中δ15NC-Gly值表现出较大的变化范围.根据大气CAAs潜在排放源δ15N值清单,本研究中生物质燃烧、土壤源和植物源是PM2.5中CAAs的主要来源.贝叶斯稳定同位素模型计算源分配结果表明生物质燃烧、土壤源和植物源对城市地区PM2.5中CAAs的平均贡献为42%、40%和18%,对森林地区PM2.5中CAAs的平均贡献为38%、38%和24%. 相似文献
2.
于2021年3—4月在南昌市森林地区和城市地区采集大气PM2.5样品,测定其游离氨基酸(Free Amino Acids,FAAs)浓度.结果表明,南昌市森林地区大气气溶胶中总FAAs浓度为0.093~0.885 nmol·m-3,平均浓度为(0.451±0.197)nmol·m-3;城市地区大气气溶胶中总FAAs浓度为0.393~1.316 nmol·m-3,平均浓度为(0.586±0.227)nmol·m-3;森林地区FAAs浓度明显低于城市地区.对氨基酸组成占比分析发现,森林与城市地区氨基酸组成相似,最丰富的氨基酸均为Pro,Gly次之,Ala、Val、Leu、Ile为主要氨基酸.城市地区疏水性氨基酸(46.25%)高于森林地区(41.57%),这说明疏水性FAAs可能更适合在城市空气中聚集.通过相关性分析发现,温度对城市地区多个FAA浓度均有显著影响(p<0.05).随着温度的升高,FAAs浓度也升高.O3对城市FAAs有显著影响(r=0.6... 相似文献
3.
气溶胶铵盐(p-NH+4)作为大气气溶胶细颗粒物(PM2.5)中主要的二次无机气溶胶(SIAs)污染物,在灰霾形成过程中起重要作用.然而对于大气中NHx(p-NH+4和NH3)各潜在来源的贡献仍存在争议.分别于2015年冬季和夏季在苏州东山半岛采集了3 h高频大气气溶胶PM2.5样品,测定总氮(TN)和p-NH+4的质量浓度及其δ15N同位素比值,并结合贝叶斯模型(SIAR)模拟,定量解析了PM2.5中铵盐的生成过程和来源.结果表明,在冬夏两季SO42-、 NO-3和NH+4均为主要的水溶性离子,占比总和超过70%.PM2.5、 TN和p-NH+ 相似文献
4.
为探究临沂市PM2.5和PM10中元素的污染特征及来源,于2016年12月至2017年10月对临沂市环境空气中PM2.5和PM10进行了同步采样.利用电感耦合等离子体质谱仪(ICP-MS)和电感耦合等离子体发射光谱仪(ICP-OES)测定了其中的23种元素,并采用富集因子法和PMF法分析其来源.结果表明,采样期间临沂市PM2.5和PM10中主要元素为Si、Ca、Al、Fe、K、Na和Mg,分别占所测元素的质量分数为92.93%和94.61%. 18种元素(除Ti、Ni、Mo、Cd和Mg)的浓度水平在冬春季最高,夏秋季最低.其中Si、Al、Ca、K和Na表现为春季浓度最高,主要分布在粗颗粒中;Cu、Zn、Pb和Sb表现为冬季浓度最高,主要分布在细颗粒中.富集因子结果表明Cd、Sb和Bi元素富集程度显著,主要受燃煤、工业生产、垃圾焚烧等人为源共同影响.PMF源解析结果表明,临沂市PM2.5中元素来源主要有燃煤和铜冶炼的混合源、市政垃圾焚烧... 相似文献
5.
宁波市环境空气中PM10和PM2.5来源解析 总被引:17,自引:4,他引:17
2010年在宁波3个环境受体点采集不同季节的PM10和PM2.5样品,同时采集颗粒物源类样品,分析它们的质量浓度及多种无机元素、水溶性离子和碳等组分的含量.采用OC/EC最小比值法确定了SOC(二次有机碳)对PM10和PM2.5的贡献,据此重新构建了受体化学成分谱.使用化学质量平衡模型对宁波市区的PM10和PM2.5来源进行了解析.结果表明:城市扬尘、煤烟尘、二次硫酸盐和机动车尾气尘是环境空气中PM10的主要来源,其分担率分别为23.0%、15.9%、13.3%和12.3%;对PM2.5有重要贡献的源类是城市扬尘、煤烟尘、二次硫酸盐、机动车尾气尘、二次硝酸盐和SOC,其分担率分别为19.9%、14.4%、16.9%、15.2%、9.78%和8.85%. 相似文献
6.
近年来,我国总体上呈现出PM2.5浓度显著降低,臭氧(O3)浓度波动上升的趋势,对我国大气复合污染协同治理提出了严峻的挑战. 厘清PM2.5与O3污染形成机制,对于制定PM2.5与O3协同治理策略具有重要意义. 本文在较为全面地梳理现有研究基础上,分析了PM2.5与O3污染的形成机制及影响二者关联性的因素,介绍了PM2.5与O3协同防控治理的内涵与思路. 结果表明:PM2.5与O3浓度呈高度非线性关系,二者相关性受光照辐射强度、光照时长、风速、相对湿度、地表边界层高度以及经度差异等外界环境因素影响. PM2.5与O3的协同控制应主要从控制反应前体物排放着手,主要包括管控NOx、VOCs、HONO、NH3以及人为氯等排放. 研究显示:目前我国在PM2.5与O3协同防控中存在基础科学研究不足和污染控制管理不完善的问题,在未来还需要重视多个尺度和空间维度的PM2.5与O3复合污染机理研究、模拟试验研究和预测演变研究,为制定更加准确、量化、高效的控制对策提供支撑;同时,需要加强前体物排放管理力度,完善国家级、省级层面的联防联控机制以及加快科研成果转化,为未来治理PM2.5与O3复合污染提供经验支持. 相似文献
7.
在南京市仙林地区住宅楼内和室外采集PM2.5样品,分析PM2.5中金属的污染特征及主要来源.结果显示,室内外PM2.5平均浓度分别为80.56μg/m3和96.77μg/m3,室内外PM2.5浓度比(I/O)平均值为0.87.除Mg外,室外其他金属平均值均高于室内.元素Pb室内外浓度相关性最高,R值为0.807.室内外PM2.5中金属元素Cd、Cu、Pb、Zn、As、Co、Cr和Ni富集程度较高.主成分分析结果显示,室外PM2.5中金属的主要来源为土壤尘、交通排放、金属冶炼、垃圾焚烧等;室内PM2.5中金属可能的来源为室外颗粒物的渗透及室内烹饪和家具材料等. 相似文献
8.
为探讨重庆主城区4个季节大气PM10和PM2.5的主要来源,于2012年2—12月在重庆主城区的工业区、文教区和居住区5个环境监测点同步采集PM10及PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳含量及其分布特征. 采集了重庆主城区土壤尘、建筑水泥尘、扬尘、移动源(包括机动车、施工机械及船舶)、工业源(包括固定燃烧源及工业工艺过程源)、生物质燃烧源及餐饮源等7类污染源,建立了重庆市本地化的污染源成分谱库. 利用CMB(化学质量平衡)受体模型及二重源解析技术分析了PM10及PM2.5的来源. 结果表明:重庆主城区大气中ρ(PM10)及ρ(PM2.5)的年均值分别为153.2和113.1 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准限值2倍以上. 大气PM10的主要来源为扬尘、二次粒子和移动源(贡献率分别为23.9%、23.5%和23.4%),大气PM2.5主要来源于二次粒子和移动源(贡献率分别为30.1%和27.9%).PM10和PM2.5的主要源类贡献率差别不大,表明研究区域内大气颗粒物污染控制应采取多源控制原则. 大气PM10来源的季节性变化特征表现为春季和秋季主要以扬尘为主、夏季和冬季主要以二次粒子为主. 相似文献
9.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施. 相似文献
10.
11.
利用大气化学完全耦合模式WRF-Chem 对天津市环境空气中特征污染物CO、NOx、O3、PM2.5 的时间变化规律和空间分布特征进行了数值模拟研究,并与实际观测资料进行了对比.结果表明,天津市CO、NOx、O3、PM2.5 具有明显的时空变化特征:O3 浓度在中午出现最高值,夜间浓度较低;NOx、O3、PM2.5 在晚上和清晨出现高浓度,午后至傍晚浓度较低.O3 在空间分布上表现为中午市区比郊区浓度高,夜间郊区浓度高.其他污染物则均表现为市区浓度高于郊区.在当日东北风情况下,周边地区对天津市污染的影响较小,4 类污染物主要是受本地源的影响. 相似文献
12.
根据2007~2008年地面、850hPa和500hPa天气图,结合主要气象要素将夏末秋初(8月和9月)影响北京地区的主要天气系统分为高污染的积累天气型(包括槽前无降水、槽后脊前、脊、副高4种基本型)和清洁的清除天气型(包括槽或槽前有降水、槽后有降水或偏北风2种基本型).北京地区4站2007年在积累天气型控制时NOx、O3(日小时均值最大值)、PM2.5和PM10浓度分别为38.1×10-9(体积分数),115.2×10-9(体积分数),90.6μg/m3,212.5μg/m3,清除天气型控制时4种污染物浓度分别为36.3×10-9(体积分数),68.9×10-9(体积分数),39.3μg/m3,125.4μg/m3;2008年施行北京奥运空气质量保障措施期间,上述4种污染物在积累天气型控制时分别为19.3×10-9(体积分数),87.1×10-9(体积分数),66.3μg/m3,99.6μg/m3,清除天气型控制时分别为19.0×10-9(体积分数),62.5×10-9(体积分数),41.0μg/m3,65.2μg/m3;尽管施行了源减排措施,积累天气型控制时北京地区污染物浓度仍相对较高,因此需关注此天气形势下污染物的变化. 相似文献
13.
研究了石家庄夏秋季节大气污染状况及2008奥运前后大气污染物浓度变化特征.2007和2008年夏秋季节,使用全自动在线观测仪器对石家庄大气环境质量进行连续监测,目的是阐明奥运期间石家庄污染物减排对当地大气环境的改变,探讨石家庄地区产生的大气污染物对北京及周边地区可能的影响.结果表明,除了氮氧化物,其他污染物均有超标情况出现,其中夏秋季节O3浓度较高,小时最大浓度值平均(O3-Max)分别为(177.2±63.0)和(105.8±61.7)μg·m-3,NO和NO2在夏秋季节的浓度分别为(4.5±4.0)、(32.7±12.4)μg·m-3和(21.5±16.9)、(60.5±16.9)μg·m-3,SO2浓度分别为(72.0±27.5)和(92.0±44.4)μg·m-3,PM2.5和PM10浓度达到(102.3±47.6)、(153.3±58.3)μg·m-3和(95.8±50.0)、(147.4±67.0)μg·m-3;奥运期间各类污染物浓度显著下降,NOx、O3-Max、SO2、PM2.5和PM10浓度分别为(43.8±15.0)、(142.0±54.9)、(52.4±18.8)、(76.7±35.1)和(116.5±38.8)μg·m-3,其中SO2、PM2.5和PM10分别较2008年监测期间平均值降低34.6%、22.8%和21.0%.本研究系统分析了夏秋季节石家庄大气污染状况,为评估当地大气污染控制措施提供了科学依据. 相似文献
14.
为了研究唐山市大气污染状况和其在奥运期间对北京及周边地区的影响,于2007年、2008年夏秋季节,使用全自动在线观测仪器对唐山市大气质量进行连续观测研究.结果表明,唐山大气细粒子PM2.5夏季平均浓度为105.1μg.m-3±46.5μg.m-3,秋季为108.1μg.m-3±61.8μg.m-3;O3小时浓度最大值夏季平均为153.9μg.m-3±50.9μg.m-3,秋季为114.6μg.m-3±56.5μg.m-3;NO2的夏、秋季节平均浓度分别为39.2μg.m-3±10.0μg.m-3与42.7μg.m-3±11.6μg.m-3;SO2夏、秋季节平均浓度分别为44.8μg.m-3±31.1μg.m-3、52.2μg.m-3±25.2μg.m-3;大气氧化性Ox(O3+NO2)夏季平均为111.9μg.m-3±27.0μg.m-3,秋季为87.2μg.m-3±27.8μg.m-3.唐山市大气细粒子污染严重,是京津冀地区细粒子的主要源之一;SO2、NO2浓度比周边地区高,但并未超过国家二级标准,NO2主要源于汽车尾气排放,长期变化小;O3浓度相对周边地区较低,但当地O3前体物(NOx)相对高排放对区域内臭氧生成的影响尚不清楚.北京奥运期间,受减排措施影响唐山大气污染物浓度均有不同程度的下降,其中SO2、PM2.5下降最为显著.奥运减排措施可以作为改善唐山大气质量的有效手段. 相似文献
15.
2008年奥运期间华北区域大气污染物本底浓度变化与分析 总被引:2,自引:3,他引:2
为了解华北区域的大气背景状况,评估污染源限排对区域空气质量的影响以及污染物输送在区域污染中的作用,在2008年奥运期间(6~11月),对华北区域兴隆大气本底监测站主要污染物NOx、SO2、O3和PM2.5进行了连续在线观测,对不同时间段的污染物的浓度水平和日变化特征进行了比较分析,结合地面气象资料和后向轨迹模式初步探讨了污染物的区域传输过程,并对区域不同站点的污染情况进行了初步比较.结果显示,2008年夏季兴隆本底站NOx、SO2、O3与PM2.5平均浓度分别为8.4、10.5、126.0和59.8μg·m-3,秋季平均浓度分别为11.7、17.2、97.5和30.7μg·m-3.奥运时段(2008-08-08~2008-08-24),兴隆NOx、SO2、O3和PM2.5平均浓度分别为6.6、6.8、100.5和33.3μg·m-3,较奥运时段前后平均浓度分别降低了29.0%、46.9%、18.6%和36.5%,与2007年奥运时段同期观测结果相比,NOx浓度下降了62.5%,PM2.5浓度下降了29.0%,奥运时段华北区域空气质量明显改善.在污染物限排之前,兴隆主要污染物的日变化形势都是夜间浓度低,白天浓度不断升高,在傍晚17:00~20:00之间达到峰值,显示了污染物区域输送在兴隆的累积,而污染源排放控制期间污染物白天的积累过程明显减弱,区域输送的污染物含量降低,这些结果表明北京及周边地区污染源的联合控制取得了明显效果.兴隆夏秋季节主要受偏南方向的季风影响,在此方向上对应的污染物浓度值最高,偏南方向上的区域污染输送对兴隆影响较大.将京津冀区域不同站点间的污染物浓度进行比较分析发现,华北区域夏秋季NOx和SO2污染较轻,O3污染不容乐观,PM2.5污染严重,需要引起足够重视. 相似文献
16.
17.
基于2013~2020年高时空分辨率的PM2.5和O3在线监测数据以及气象观测数据,利用KZ(Kolmogorov-Zurbenko)滤波耦合逐步回归等技术,对天津市PM2.5和O3浓度变化趋势、相互关系和影响因素进行了分析.结果表明,与2013年相比,2020年天津市PM2.5浓度下降50.0%,O3浓度上升25.8%.从月际变化来看,与2013~2017年相比,2018~2020年天津市PM2.5浓度月际间差异逐渐缩小,O3浓度从4月开始出现明显上升,污染发生时间节点提前.O3与PM2.5的相关性呈现明显的季节性分布特征,冬季整体呈负相关,夏季正相关且相关性比其他季节高.不同季节O3与PM2.5之间的拟合斜率与相关性系数整体呈正比例关系,拟合斜率与相关性系数的比值逐年升高说明PM2.5对O3... 相似文献
18.
基于2014~2017年江苏省13个市的PM2.5浓度和O3_8h_max数据,探讨了其时空分布特征.在此基础上,研究了日益升高的近地层O3浓度与气象因子的关系.结果表明:江苏省2014~2017年PM2.5浓度整体上呈下降的趋势,年均浓度减少率为6.06μg/m3,而O3_8h_max整体上呈上升趋势,年均浓度增长率为3.84μg/m3.总体上,PM2.5浓度呈现冬春高、夏秋低的V型月变化特征,O3_8h_max则基本呈现不规则的M型,在5月份达到峰值后逐渐降低,又在7~9月份保持平缓,而后又逐渐下降.空间上,江苏省PM2.5浓度呈现\"内陆高,沿海低\"的状态,而O3_8h_max却呈现\"沿海高,内陆低\"的状态.与气象因子的相关性表明,O3浓度与气温和太阳辐射呈正相关关系,与相对湿度呈负相关关系,太阳辐射对O3浓度的影响最大,其次是温度和相对湿度.当日平均气温在20~30℃、相对湿度在50%~70%、太阳辐射强度高于150w/m2时O3浓度容易出现超标. 相似文献