首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Passive samplers have been shown to be an inexpensive alternative to direct sampling. Diffusion denuders have been developed to measure the concentration of species such as ammonia (NH3), which is in equilibrium with particulate ammonium nitrate. Conventional denuder sampling that inherently requires air pumps and, therefore, electrical power. To estimate emissions of NH3 from a fugitive source would require an array of active samplers and meteorological measurements to estimate the flux. A recently developed fabric denuder was configured in an open tube to passively sample NH3 flux. Passive and active samplers were collocated at a dairy farm at the California State University, Fresno, Agricultural Research Facility. During this comparison study, NH3 flux measurements were made at the dairy farm lagoon before and after the lagoon underwent acidification. Comparisons were made of the flux measurements obtained directly from the passive flux denuder and those calculated from an active filter pack sampler and wind velocity. The results show significant correlation between the two methods, although a correction factor needed to be applied to directly compare the two techniques. This passive sampling approach significantly reduces the cost and complexity of sampling and has the potential to economically develop a larger inventory base for ambient NH3 emissions.  相似文献   

2.
A number of techniques have been developed to quantify ammonia (NH(3)) emissions following land application of manure or fertiliser. In this study, coefficients of variation were determined for three commonly used field techniques (mass balance integrated horizontal flux, wind tunnels and the equilibrium concentration technique) for measuring emissions from a range of manure types. Coefficients of variation (CV) for absorption flasks, passive flux samplers and passive diffusion samplers were 21, 10 and 14%, respectively. In comparative measurements, concentrations measured using passive flux samplers and absorption flasks did not differ significantly, but those measured using passive diffusion samplers were on average 1.8 times greater. The mass balance technique and wind tunnels gave broadly similar results in two out of four field tests. Overexposure of passive diffusion samplers for some sampling periods meant that estimation of cumulative NH(3) emission using the equilibrium concentration technique in the field tests could not be made. For cumulative NH(3) emissions, CVs were in the range of 23-52, 46-74 and 21-39% for the mass balance, wind tunnel and equilibrium concentration techniques, respectively. Lower CVs were associated with measurements following slurry compared with solid manure applications. Our conclusions from this study are that for the measurement of absolute emissions the mass balance technique is to be preferred, and for small-plot comparative measurements the wind tunnel system is preferred to the equilibrium concentration technique.  相似文献   

3.
Ammonia (NH3) fluxes from waste treatment lagoons and barns at two conventional swine farms in eastern North Carolina were measured. The waste treatment lagoon data were analyzed to elucidate the temporal (seasonal and diurnal) variability and to derive regression relationships between NH3 flux and lagoon temperature, pH and ammonium content of the lagoon, and the most relevant meteorological parameters. NH3 fluxes were measured at various sampling locations on the lagoons by a flowthrough dynamic chamber system interfaced to an environmentally controlled mobile laboratory. Two sets of open-path Fourier transform infrared (FTIR) spectrometers were also used to measure NH3 concentrations for estimating NH3 emissions from the animal housing units (barns) at the lagoon and spray technology (LST) sites. Two different types of ventilation systems were used at the two farms. Moore farm used fan ventilation, and Stokes farm used natural ventilation. The early fall and winter season intensive measurement campaigns were conducted during September 9 to October 11, 2002 (lagoon temperature ranged from 21.2 to 33.6 degrees C) and January 6 to February 2, 2003 (lagoon temperature ranged from 1.7 to 12 degrees C), respectively. Significant differences in seasonal NH3 fluxes from the waste treatment lagoons were found at both farms. Typical diurnal variation of NH3 flux with its maximum value in the afternoon was observed during both experimental periods. Exponentially increasing flux with increasing surface lagoon temperature was observed, and a linear regression relationship between logarithm of NH3 flux and lagoon surface temperature (T1) was obtained. Correlations between lagoon NH3 flux and chemical parameters, such as pH, total Kjeldahl nitrogen (TKN), and total ammoniacal nitrogen (TAN) were found to be statistically insignificant or weak. In addition to lagoon surface temperature, the difference (D) between air temperature and the lagoon surface temperature was also found to influence the NH3 flux, especially when D > 0 (i.e., air hotter than lagoon). This hot-air effect is included in the statistical-observational model obtained in this study, which was used further in the companion study (Part II), to compare the emissions from potential environmental superior technologies to evaluate the effectiveness of each technology.  相似文献   

4.
A passive wind-vane flux sampler is a simple low-cost device used to estimate long-term vertical fluxes of ammonia in the atmospheric surface boundary layer. The passive flux sampler measures the horizontal flux of ammonia. A vertical gradient of the horizontal flux, combined with micro-meteorological measurements of wind speed and temperature, is used to estimated the vertical flux of ammonia using a modified aerodynamic gradient technique. The passive wind-vane flux sampler gradient was calibrated against a gradient measured with fast response (6 min) continuous-flow denuders. The measurements were carried out at a heathland located in an intensive farming area in the centre of the Netherlands. A field campaign took place over 70 day period in the summer of 1996, during which the sampling periods of the passive wind-vane flux sampler varied between 3 and 9 days. The comparison clearly showed that the long-term measurements with the passive wind-vane flux samplers gave accurate average ammonia deposition values for the field campaign as a whole which deviated by only 18% from the reference flux. However, there was no significant correlation between the fluxes from the passive samplers and the reference method for the individual 10 periods which were compared. Possible explanations found for the lacking correlation were (I) a high percentage number of half-hour emission events within each period resulted in a significant large relative deviation between the fluxes, and (II) uncertainties in the reference method might also explain the lacking correlation. The passive wind-vane flux samplers proved to be a stable method for long-term measurements (months to years) due to a close to 100% optimal functioning during the field campaign.  相似文献   

5.
The need for developing environmentally superior and sustainable solutions for managing the animal waste at commercial swine farms in eastern North Carolina has been recognized in recent years. Program OPEN (Odor, Pathogens, and Emissions of Nitrogen), funded by the North Carolina State University Animal and Poultry Waste Management Center (APWMC), was initiated and charged with the evaluation of potential environmentally superior technologies (ESTs) that have been developed and implemented at selected swine farms or facilities. The OPEN program has demonstrated the effectiveness of a new paradigm for policy-relevant environmental research related to North Carolina's animal waste management programs. This new paradigm is based on a commitment to improve scientific understanding associated with a wide array of environmental issues (i.e., issues related to the movement of N from animal waste into air, water, and soil media; the transmission of odor and odorants; disease-transmitting vectors; and airborne pathogens). The primary focus of this paper is on emissions of ammonia (NH3) from some potential ESTs that were being evaluated at full-scale swine facilities. During 2-week-long periods in two different seasons (warm and cold), NH3 fluxes from water-holding structures and NH3 emissions from animal houses or barns were measured at six potential EST sites: (1) Barham farm--in-ground ambient temperature anaerobic digester/energy recovery/greenhouse vegetable production system; (2) BOC #93 farm--upflow biofiltration system--EKOKAN; (3) Carrolls farm--aerobic blanket system--ISSUES-ABS; (4) Corbett #1 farm--solids separation/ gasification for energy and ash recovery centralized system--BEST; (5) Corbett #2 farm--solid separation/ reciprocating water technology--ReCip; and (6) Vestal farm--Recycling of Nutrient, Energy and Water System--ISSUES-RENEW. The ESTs were compared with similar measurements made at two conventional lagoon and spray technology (LST) farms (Moore farm and Stokes farm). A flow-through dynamic chamber system and two sets of open-path Fourier transform infrared (OP-FTIR) spectrometers measured NH3 fluxes continuously from water-holding structures and emissions from housing units at the EST and conventional LST sites. A statistical-observational model for lagoon NH3 flux was developed using a multiple linear regression analysis of 15-min averaged NH3 flux data against the relevant environmental parameters measured at the two conventional farms during two different seasons of the year. This was used to compare the water-holding structures at ESTs with those from lagoons at conventional sites under similar environmental conditions. Percentage reductions in NH3 emissions from different components of each potential EST, as well as the whole farm on which the EST was located were evaluated from the estimated emissions from water-holding structures, barns, etc., all normalized by the appropriate nitrogen excretion rate at the potential EST farm, as well as from the appropriate conventional farm. This study showed that ammonia emissions were reduced by all but one potential EST for both experimental periods. However, on the basis of our evaluation results and analysis and available information in the scientific literature, the evaluated alternative technologies may require additional technical modifications to be qualified as unconditional ESTs relative to NH3 emissions reductions.  相似文献   

6.
There is a need for a robust and accurate technique to measure ammonia (NH3) emissions from animal feeding operations (AFOs) to obtain emission inventories and to develop abatement strategies. Two consecutive seasonal studies were conducted to measure NH3 emissions from an open-lot dairy in central Texas in July and December of 2005. Data including NH3 concentrations were collected and NH3 emission fluxes (EFls), emission rates (ERs), and emission factors (EFs) were calculated for the open-lot dairy. A protocol using flux chambers (FCs) was used to determine these NH3 emissions from the open-lot dairy. NH3 concentration measurements were made using chemiluminescence-based analyzers. The ground-level area sources (GLAS) including open lots (cows on earthen corrals), separated solids, primary and secondary lagoons, and milking parlors were sampled to estimate NH3 emissions. The seasonal NH3 EFs were 11.6 +/- 7.1 kg-NH3 yr(-1)head(-1) for the summer and 6.2 +/- 3.7 kg-NH3 yr(-1)head(-1) for the winter season. The estimated annual NH3 EF was 9.4 +/- 5.7 kg-NH3 yr(-1)head(-1) for this open-lot dairy. The estimated NH3 EF for winter was nearly 47% lower than summer EF. Primary and secondary lagoons (approximately 37) and open-lot corrals (approximately 63%) in summer, and open-lot corrals (approximately 95%) in winter were the highest contributors to NH3 emissions for the open-lot dairy. These EF estimates using the FC protocol and real-time analyzer were lower than many previously reported EFs estimated based on nitrogen mass balance and nitrogen content in manure. The difference between the overall emissions from each season was due to ambient temperature variations and loading rates of manure on GLAS. There was spatial variation of NH3 emission from the open-lot earthen corrals due to variable animal density within feeding and shaded and dry divisions of the open lot. This spatial variability was attributed to dispirit manure loading within these areas.  相似文献   

7.
Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 microg m(-3) and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head(-1) day(-1), showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   

8.
In order to comply with the ammonia (NH(3)) emission reduction assigned to the Netherlands development of new measures are needed, which should be supported by fast and accurate measurements to arrive at new estimates of the NH(3) emission from each agricultural source. This paper gives an overview of the current methods used in the Netherlands to measure NH(3) emissions from animal houses, and provides alternative methods for some particular situations. For mechanically ventilated animal houses, passive flux samplers placed in the ventilation shafts of the animal house are presented as alternative to measure a larger number of animal houses (replicates) with the same housing system at a low price. For naturally ventilated animal houses, when mixing in the animal house is not good enough to allow measurements within the animal house (internal tracer gas ratio method), two measurement methods are discussed: the Gaussian plume dispersion model, which is usually not suitable for agricultural situations, and the flux frame method, which is not always applicable because of distortion of the flow around the building. Finally, for animal houses with outside yards for the animals, there are at this moment no methods available to measure the NH(3) emissions from these complex situations, although quick box methods (for the outside yards) and a combination of a backward Lagrangian stochastic model with open-path concentration measurements with a tunable diode laser (TDL), look promising.  相似文献   

9.
Abstract

Ammonia emissions contribute to the formation of secondary particulate matter (PM) and violations of the National Ambient Air Quality Standard. Ammonia mass concentration measurements were made in February 1999 upwind and downwind of an open-lot dairy in California, using a combination of active bubbler and passive filter samplers. Ammonia fluxes were calculated from concentrations measured at 2, 4, and 10 m above ground at three locations on the downwind edge of the dairy, using micrometeorological techniques. A new method was developed to interpolate fluxes at six additional locations from ammonia concentrations measured at a single height, providing measurements at sufficient spatial resolution along the downwind border of the dairy to account for the heterogeneity of the source. PM measured up- and downwind of the dairy demonstrated insignificant ammonium particle formation in the immediate vicinity of the dairy and negligible contribution of dissociated ammonium nitrate to measured ammonia concentrations. Ammonium nitrate concentrations measured downwind of the dairy ranged from 26 to 0.26 μg m?3 and from 2 to 43% of total PM2.5 mass concentrations. Measured ammonia fluxes showed that liquid manure retention ponds represented relatively minor sources of ammonia in winter on the dairy studied. Ammonia emission factors derived from the measurements ranged from 19 to 143 g head?1 day?1, showing an increase with warmer, drier weather and a decrease with increased relative humidity and lower temperatures.  相似文献   

10.
The purpose of this research was to determine the efficiency of a polymer biocover for the abatement of H2S and NH3 emissions from an east-central Missouri swine lagoon with a total surface area of 7800 m2. The flux rate of NH3, H2S, and CH4 was monitored continuously from two adjacent, circular (d = 66 m) control and treatment plots using a nonintrusive, micrometeorological method during three independent sampling periods that ranged between 52 and 149 hr. Abatement rates were observed to undergo a temporal acclimation event in which NH3 abatement efficiency improved from 17 to 54% (p = < 0.0001 to 0.0005) and H2S abatement efficiency improved from 23 to 58% (p < 0.0001) over a 3-month period. The increase in abatement efficiency for NH3 and H2S over the sampling period was correlated with the development of a stable anaerobic floc layer on the bottom surface of the biocover that reduced mass transfer of NH3 and H2S across the surface. Analysis of methanogenesis activity showed that the biocover enhanced the rate of anaerobic digestion by 25% when compared with the control. The biocover-enhanced anaerobic digestion process was shown to represent an effective mechanism to counteract the accumulation of methanogenic substrates in the biocovered lagoon.  相似文献   

11.
This study investigates the use of a small passive sampler for aerosol particles to determine particulate matter (PM)10-2.5 concentrations in outdoor air. The passive sampler collects particles by gravity, diffusion, and convective diffusion onto a glass coverslip that is then examined with an optical microscope; digital images are processed with free software and the resultant PM10-2.5 concentrations determined. Both the samplers and the analyses are relatively inexpensive. Passive samplers were collocated with Federal Reference Method (FRM) samplers in Chapel Hill, NC; Phoenix, AZ; and Birmingham, AL; for periods from 5 to 15 days. Particles consisted primarily of inorganic dusts at some sites and a mix of industrial and inorganic materials at other sites. Measured concentrations ranged from < 10 microg/m3 to approximately 40 microg/m3. Overall, PM10-2.5 concentrations measured with the passive samplers were within approximately 1 standard deviation of concentrations measured with the FRM samplers. Concentrations determined with passive samplers depend on assumptions about particle density and shape factors and may also depend somewhat on local wind speed and turbulence; accurate values for these parameters may not be known. The degree of agreement between passive and FRM concentrations measured here suggests that passive measurements may not be overly dependent on accurate knowledge of these parameters.  相似文献   

12.
Acidic aerosol concentrations measured by an annular denuder system (ADS) and a honeycomb denuder system (HDS) in Hsinchu, Taiwan, were compared. Aerosols were also sampled by a MOUDI (micro-orifice uniform deposit impactor) and analyzed by an ion chromatograph to determine the size distributions of different species. Using the measured aerosol size distribution, theoretical analysis showed that positive HNO3 artifact due to volatilization of NH4NO3 is generally negligible for both samplers. Comparing two different denuder samplers, the average concentration of HNO3 measured by the ADS was found to be lower than that measured by the HDS, while the difference between the two samplers for the average concentration of other species was found to be within +/- 15%. A possible cause of the difference in HNO3 concentrations is due to a greater loss of HNO3 in the cyclone used by the ADS than in the impactor used by the HDS. The study also showed incomplete absorption of the evaporated HCl and HNO3 from the particles on the Teflon filter by the first nylon filter in the filter pack of the ADS. Collection efficiency and capacity of HCl and HNO3 by the nylon filters need further investigation.  相似文献   

13.
Concentrations of air pollutants were monitored during the May November 1999 period on a network of forested sites in Sequoia National Park, California. Measurements were conducted with: (1) active monitors for nitric oxide (NO), nitrogen dioxide (NO2) and ozone (O3); (2) honeycomb denuder/filter pack systems for nitric acid vapor (HNO3), nitrous acid vapor (HNO2), ammonia (NH3), sulfur dioxide (SO2), particulate nitrate (NO3-), ammonium (NH4+), and sulfate (SO4(2-)); and (3) passive samplers for O3, HNO3 and NO2. Elevated concentrations of O3 (seasonal means 41-71 ppb), HNO3 (seasonal means 0.4-2.9 microg/m3), NH3 (seasonal means 1.6-4.5 microg/m3), NO3 (1.1-2.0 microg/m3) and NH4+ (1.0-1.9 microg/m3) were determined. Concentrations of other pollutants were low. With increasing elevation and distance from the pollution source area of O3, NH3 and HNO3 concentrations decreased. Ammonia and NH4+ were dominant N pollutants indicating strong influence of agricultural emissions on forests and other ecosystems of the Sequoia National Park.  相似文献   

14.
The precision and accuracy of the determination of particu-late sulfate and fluoride, and gas phase SO2 and HF are estimated from the results obtained from collocated replicate samples and from collocated comparison samples for high-and low-volume filter pack and annular diffusion denuder samplers. The results of replicate analysis of collocated samples and replicate analyses of a given sample for the determination of spherical aluminosilicate fly ash particles have also been compared. Each of these species is being used in the chemical mass balance source apportionment of sulfur oxides in the Grand Canyon region as part of Project MOHAVE, and the precision and accuracy analyses given in this paper provide input to that analysis. The precision of the various measurements reported here is ±1.8 nmol/m3 and ±2.5 nmol/m3 for the determination of SO2 and sulfate, respectively, with an annular denuder. The precision is ±0.5 nmol/m3 and ±2.0 nmol/m3 for the determination of the same species with a high-volume or low-volume filter pack. The precision for the determination of the sum of HF(g) and fine particulate fluoride is ±0.3 nmol/m3. The precision for the determination of aluminosilicate fly ash particles is ±100 particles/m3. At high concentrations of the various species, reproducibility of the various measurements is ±10% to ±14% of the measured concentration. The concentrations of sulfate determined using filter pack samplers are frequently higher than those determined using diffusion denuder sampling systems. The magnitude of the difference (e.g., 2-10 nmol sulfate/m3) is small, but important relative to the precision of the data and the concentrations of particulate sul-fate present (typically 5-20 nmol sulfate/m3). The concentrations of SO2(g) determined using a high-volume cascade impactor filter pack sampler are correspondingly lower than those obtained with diffusion denuder samplers. The concentrations of SOx (SO2(g) plus particulate sulfate) determined using the two samplers during Project MOHAVE at the Spirit Mountain, NV, and Hopi Point, AZ, sampling sites were in agreement. However, for samples collected at Painted Desert, AZ, and Meadview, AZ, the concentrations of SOx and SO2(g) determined with a high-volume cascade impactor filter pack sampler were frequently lower than those determined using a diffusion denuder sampling system. These two sites had very low ambient relative humidity, an average of 25%. Possible causes of observed differences in the SO2(g) and sulfate results obtained from different types of samplers are given.  相似文献   

15.
During some past two decades there has been a growing interest among air pollution-vegetation effects-scientists to use passive sampling systems for quantifying ambient, gaseous air pollutant concentrations, particularly in remote and wilderness areas. On the positive side, excluding the laboratory analysis costs, passive samplers are inexpensive, easy to use and do not require electricity to operate. Therefore, they are very attractive for use in regional-scale air quality assessments. Passive samplers allow the quantification of cumulative air pollutant exposures, as total or average pollutant concentrations over a sampling duration. Such systems function either by chemical absorption or by physical adsorption of the gaseous pollutant of interest onto the sampling medium. Selection of a passive sampler must be based on its known or tested characteristics of specificity and linearity of response to the chemical constituent being collected. In addition, the effects of wind velocity, radiation, temperature and relative humidity must be addressed in the context of absorbent/adsorbent performance and sampling rate. Because of all these considerations, passive samplers may provide under- or overestimations of the cumulative exposures, compared to the corresponding data from co-located continuous monitors or active samplers, although such statistical variance can be minimized by taking necessary precautions. On the negative side, cumulative exposures cannot identify short-term (相似文献   

16.
The concentrations of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) were determined in air samples collected at four sampling sites located in two zones of Barcelona (Spain): near a municipal solid waste incinerator (MSWI) and a combined cycle power plant (3 sites), and at a background/control site. Samples were collected using high-volume active samplers. Moreover, 4 PUF passive samplers were deployed at the same sampling points during three months. For PCDD/Fs, total WHO-TEQ values were 27.3 and 10.9 fg WHO-TEQm(-3) at the urban/industrial and the background sites, respectively. The sum of 7 PCB congeners and the Sigma PCN levels were also higher at the industrial site than at the background site. In order to compare active and passive sampling, the accumulated amounts of PCDD/Fs, PCBs and PCNs in the four passive air samplers, as well as the total toxic equivalents in each sampling site were also determined. To assess the use of PUF passive samplers as a complementary tool for PCDD/F, PCB and PCN monitoring, sampling rates were calculated in accordance with the theory of passive air samplers. PUF disks allowed establishing differences among zones for the POP levels, showing that they can be a suitable method to determine POP concentrations in air in areas with various potential emission sources. Although both particle and gas phase were sorbed by the PUFs, data of gas phase congeners are more reproducible.  相似文献   

17.
A new style of diffusion denuder has been evaluated specifically for sampling HNO3. A coated fabric is used as the denuder substrate, which can be loaded directly into a standard filter holder. This approach allows direct denuder sampling with no additional capital costs over filter sampling and simplifies the coating and extraction process. Potential denuder materials and coatings were evaluated in the laboratory to test the removal efficiency. NaCl coatings were used to assess more than 20 materials for HNO3 collection efficiency. Particle retention, which would cause a denuder to have a positive bias for gas concentration measurements, was evaluated by ambient air sampling using particulate sulfate as the reference aerosol. Particle retention varied from 0 to 15%, depending on the denuder material tested. The best performing material showed an average particle retention of less than 3%. Denuder efficiency of four fabric materials was tested under ambient conditions to determine removal efficiency. The fabric denuder method was compared with a long path-length Fourier transform infrared (FTIR) spectrometer, a tunable diode laser absorption spectrometer (TDLAS), and a denuder difference sampler to independently measure HNO3. HNO3 collection efficiency was typically 90% for the denuders, whether coated with NaCl or not. For 10-L/min sampling rates with the fabric denuder, the square of the correlation coefficient with the FTIR spectrometer was 0.73, compared to 0.24 with the TDLAS.  相似文献   

18.
Portable 24-hr sampling units were used to collect air samples from eight biofilters on four animal feeding operations. The biofilters were located on a dairy, a swine nursery, and two swine finishing farms. Biofilter media characteristics (age, porosity, density, particle size, water absorption capacity, pressure drop) and ammonia (NH3), hydrogen sulfide (H2S), sulfur dioxide (SO2), methane (CH4), and nitrous oxide (N2O) reduction efficiencies of the biofilters were assessed. The deep bed biofilters at the dairy farm, which were in use for a few months, had the most porous media and lowest unit pressure drops. The average media porosity and density were 75% and 180 kg/m3, respectively. Reduction efficiencies of H2S and NH3 (biofilter 1: 64% NH3, 76% H2S; biofilter 2: 53% NH3, 85% H2S) were close to those reported for pilot-scale biofilters. No N2O production was measured at the dairy farm. The highest H2S, SO2, NH3, and CH4 reduction efficiencies were measured from a flat-bed biofilter at the swine nursery farm. However, the highest N2O generation (29.2%) was also measured from this biofilter. This flat-bed biofilter media was dense and had the lowest porosity. A garden sprinkler was used to add water to this biofilter, which may have filled media pores and caused N2O production under anaerobic conditions. Concentrations of H2S and NH3 were determined using the portable 24-hr sampling units and compared to ones measured with a semicontinuous gas sampling system at one farm. Flat-bed biofilters at the swine finishing farms also produced low amounts of N2O. The N2O production rate of the newer media (2 years old) with higher porosity was lower than that of older media (3 years old) (P = 0.042).  相似文献   

19.
Passive air samplers have made it possible to measure long-term average air concentrations of semi-volatile organic contaminants (SVOCs) at a large number of sampling sites. In order to use the results of such measurement networks in the derivation of empirical measures of long-range transport, a method is required that quantitatively expresses the proximity of air sampling sites to spatially distributed emissions. We propose three increasingly sophisticated tiers for quantifying proximity to emissions. The ‘static’ method assumes that a sampling site is only influenced by emission taking place in the same 1° of latitude by 1° of longitude cell in which it is located. The ‘dispersion’ method additionally accounts for the influence of emissions in neighboring cells by adding the emissions into each cell weighted by the distance between the cell’s center and the center of the cell containing the sampling site. The ‘air-shed’ method quantifies proximity to emissions by combining the emissions in each cell with the probability that air arriving at the sampling site passed through each cell. The probability is calculated for each sampling site by aggregating a large number of air mass back-trajectories. These new proximity gauges were contrasted against the remoteness index RI, which is derived from global atmospheric tracer transport modeling. The four methods were used to quantify the proximity of the sampling sites of the Global Atmospheric Passive Sampling (GAPS) study to global Polycyclic Aromatic Hydrocarbon (PAH) emissions. The proximity gauges produce markedly different results primarily for sites located near steep gradients in population, such as occur in coastal areas or at the feet of mountain ranges. The dispersion method produces quite similar results to the air-shed method using drastically less computational power and input data, but application of the air-shed method may be necessary where winds are strongly directional.  相似文献   

20.
This study evaluates the performance of Model 3300 Ogawa Passive Nitrogen Dioxide (NO2) Samplers and 3M 3520 Organic Vapor Monitors (OVMs) by comparing integrated passive sampling concentrations to averaged hourly NO2 and volatile organic compound (VOC) measurements at two sites in El Paso, TX. Sampling periods were three time intervals (3-day weekend, 4-day weekday, and 7-day weekly) for three consecutive weeks. OVM concentrations were corrected for ambient pressure to account for higher elevation. Precise results (< 5% relative standard deviation, RSD) were found for NO2 measurements from collocated Ogawa samplers. Reproducibility was lower from duplicate OVMs for BTEX (benzene, toluene, ethylbenzene, and xylene isomers) VOCs (> or = 77% RSD for 2-day samples) with better precision for longer sampling periods. Comparison of Ogawa NO2 samplers with chemiluminescence measurements averaged over the same time period suggested potential calibration problems with the chemiluminescence analyzer. For BTEX species, generally good agreement was obtained between OVMs and automated-gas chromatograph (auto-GC) measurements. The OVMs successfully tracked increasing levels of VOCs recorded by the auto-GCs. However, except for toluene, OVM BTEX measurements generally exceeded their continuous counterparts with a mean bias of 5-10%. Although interpretation of the study results was limited due to small sample sizes, diffusion barrier influences caused by shelters that housed OVMs and differences in sampling heights between OVMs and auto-GC inlet may explain the overestimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号