首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two mathematical models of the atmospheric fate and transport of mercury (Hg), an Eulerian grid-based model and a Gaussian plume model, are used to calculate the atmospheric deposition of Hg in the vicinity (i.e., within 50 km) of five coal-fired power plants. The former is applied using two different horizontal resolutions: coarse (84 km) and fine (16.7 km). More than 96% of the power plant Hg emissions are calculated with the plume model to be transported beyond 50 km from the plants. The grid-based model predicts a lower fraction to be transported beyond 50 km: >91% with a coarse resolution and >95% with a fine resolution. The contribution of the power plant emissions to total Hg deposition within a radius of 50 km from the plants is calculated to be <8% with the plume model, <14% with the Eulerian model with a coarse resolution, and <10% with the Eulerian model with a fine resolution. The Eulerian grid-based model predicts greater local impacts than the plume model because of artificially enhanced vertical dispersion; the former predicts about twice as much Hg deposition as the latter when the area considered is commensurate with the resolution of the grid-based model. If one compares the local impacts for an area that is significantly less than the grid-based model resolution, then the grid-based model may predict lower local deposition than the plume model, because two compensating errors affect the results obtained with the grid-based model: initial dilution of the power plant emissions within one or more grid cells and enhanced vertical mixing to the ground.  相似文献   

2.
3.
4.
Total mercury (TotHg) and methyl mercury (MeHg) concentrations were studied in runoff from eight small (0.02-1.3 km2) boreal forest catchments (mineral soil and peatland) during 1990-1995. Runoff waters were extremely humic (TOC 7-70 mg l-1). TotHg concentrations varied between 0.84 and 24 ng l-1 and MeHg between 0.03 and 3.8 ng l-1. TotHg fluxes from catchments ranged from 0.92 to 1.8 g km-2 a-1, and MeHg fluxes from 0.03 to 0.33 g km-2 a-1. TotHg concentrations and output fluxes measured in runoff water from small forest catchments in Finland were comparable with those measured in other boreal regions. By contrast, MeHg concentrations were generally higher. Estimates for MeHg output fluxes in this study were comparable at sites with forests and wetlands in Sweden and North America, but clearly higher than those measured at upland or agricultural sites in other studies. Peatland catchments released more MeHg than pure mineral soil or mineral soil catchments with minor area of peatland.  相似文献   

5.
大气汞的来源及其浓度分布特征研究进展   总被引:1,自引:0,他引:1  
大气汞是全球性的污染物,其来源有自然源和人为源,亚洲地区是最大的人为大气汞排放源,占全球人为排汞量的67%(质量分数),其中又以中国为最.燃煤和有色金属冶炼对中国大气汞排放的贡献最大.环境界面的释汞通量是全球大气汞预算的重要组成部分,也是目前的研究热点之一.综述了不同环境界面的释汞通量及其影响因素,并比较了不同地区大气...  相似文献   

6.
Atmospheric mercury in the environment as a result of the consumption of fossil fuels, such as coal used in electricity generation, has gained increased attention worldwide because of its toxicity, atmospheric persistence, and bioaccumulation. Determining or predicting the concentration of this pollutant in ambient air is essential for determining sensitive areas requiring health protection. This study investigated the spatiotemporal variability of gaseous elemental mercury (GEM) concentrations and its dry deposition surrounding the Presidente Plutarco Elías Calles (CETEPEC) coal-fired power plant, located on Mexico’s Pacific coast. The CALPUFF dispersion model was applied on the basis of the daily consumption of coal during 2013 for each generating unit in the power plant and considering the local scale. The established 300-ng/m3 annual average risk factor considered by the U.S. Department of Health and Human Services (U.S. DHHS) and Integrated Risk Information System (IRIS) must not be exceeded to meet satisfactory air quality levels. An area of 65 × 60 km was evaluated, and the results show that the risk level for mercury vapor was not exceeded because the annual average concentration was 2.8 ng/m3. Although the predicted risk level was not exceeded, continuous monitoring studies of GEM and of particulates in the atmosphere, soil, and water may be necessary to identify the concentration of this pollutant, specifically that resulting from coal-fired power plants operated in environmental areas of interest in Mexico. The dry mercury deposition was low in the study area; according to the CALPUFF model, the annual average was 1.40E?2 ng/m2/sec. These results represent a starting point for Mexico’s government to implement the Minamata Convention on Mercury, which Mexico signed in 2013.

Implications: The obtained concentrations of mercury from a bigger coal-fired plant in Mexico, through the application of the CALPUFF dispersion model by the mercury emissions, are below the level recommended according to the US Department of Health and Human Services and Integrated Risk Information System. These results provide evidence of important progress in the planning and installation to the future of monitoring mercury stations in the area of interest.  相似文献   

7.
Direct measurements of radionuclide tracers are useful tools for correcting proxy fluxes that are subject to post depositional changes. An analytical methodology was designed for the measurement of 210Pb and 7Be in rainwater. Atmospheric inputs of the radionuclides to Cumbria (UK) were recorded. Rainwater fluxes were then compared with measurements from soil cores. The annual deposition from April 1997 to March 1998 of 210Pb and 7Be was 165 ± 8 Bq m-2 and 3912 ± 120 Bq m-2, respectively, compared to an indirect 210Pb flux of 148 ± 7 Bq m-2 yr-1 calculated from soil core records.  相似文献   

8.
Changes in atmospheric mercury deposition are used to evaluate the effectiveness of regulations controlling emissions. This analysis can be complicated by seemingly incongruent data from different model runs, model types, and field measurements. Here we present a case study example that describes how to identify trends in regional scale mercury deposition using best-available information from multiple data sources. To do this, we use data from three atmospheric chemistry models (CMAQ, GEOS-Chem, HYSPLIT) and multiple sediment archives (ombrotrophic bog, headwater lake, coastal salt marsh) from the Bay of Fundy region in Canada. Combined sediment and modeling data indicate that deposition attributable to US and Canadian emissions has declined in recent years, thereby increasing the relative significance of global sources. We estimate that anthropogenic emissions in the US and Canada account for 28-33% of contemporary atmospheric deposition in this region, with the rest from natural (14-32%) and global sources (41-53%).  相似文献   

9.
Atmospheric phosphine (PH3) fluxes from typical types of wetlands and PH3 concentrations in adjacent atmospheric air were measured. The seasonal distribution of PH3 in marsh and paddy fields were observed. Positive PH3 fluxes are significantly related to high air temperature (summer season) and increased vegetation. It is concluded that vegetation speeds up the liberation of PH3 from soils, while water coverage might function as a diffusion barrier from soils or sediments to the atmosphere. The concentrations of atmospheric PH3 (ng m−3) above different wetlands decrease in the order of paddy fields (51.8 ± 3.1) > marsh (46.5 ± 20.5) > lake (37.0 ± 22.7) > coastal wetland (1.71 ± 0.73). Highest atmospheric PH3 levels in marsh are found in summer. In paddy fields, atmospheric PH3 concentrations in flourishing stages are higher than those in slowly growing stages.  相似文献   

10.
Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m−3 and 30.7 pg m−3, respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m−2 yr−1. Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m−2 yr−1, respectively.  相似文献   

11.
To provide an understanding of arsenic (As) and mercury (Hg) concentrations in soil, sediment, water, and fish tissues, samples were collected from a Mississippi River alluvial floodplain located in northwest Mississippi. As concentrations increased approximately an order of magnitude from water (5.12 micrograms/l) to fish tissues (36.99 micrograms/kg) and an additional two orders of magnitude in soils, lake sediments, and wetland sediments (5728, 5614, and 6746 micrograms/kg), respectively. Average Hg concentrations in water, soils, lake sediments, and fish were 2.16 micrograms/l, 55.1, 14.5 and 125 micrograms/kg, respectively. As and Hg concentrations were within published ranges for uncontaminated soil, water, and sediments. As concentrations represented a low risk. Hg concentrations were also low but showed a greater tendency to concentrate in fish tissue. The dominant mode of entry of these materials into aquatic systems is through storm-generated runoff. Since both metals accompany sediments, agricultural conservation practices such as reduced tillage, buffer riparian strips, and bordering sediment ponds or drainage wetlands will minimize watershed input to aquatic systems.  相似文献   

12.
Most studies on the atmospheric behaviour of mercury in North America have excluded a detailed treatment of natural mercury emissions. The objective of this work is to report a detailed simulation of the atmospheric mercury in a domain that covers a significant part of North America and includes not only anthropogenic mercury emissions but also those from natural sources including vegetation, soil and water.The simulations were done using a natural mercury emission model coupled with the US EPA's SMOKE/CMAQ modelling system. The domain contained 132×90 grid cells at a resolution of 36 km, covering the continental United States, and major parts of Canada and Mexico. The simulation was carried out for 2002, using boundary conditions from a global mercury model. Estimated total natural mercury emission in the domain was 230 tonnes (1 tonne=1000 kg) and the ratio of natural to anthropogenic emissions varied from 0.7 in January to 3.2 in July. Average total gaseous mercury (TGM) concentration ranged between 1 and 4 ng m−3. Good agreement was found between the modelled results and measurements at three Ontario sites for ambient mercury concentrations, and at 72 mercury deposition network sites in the domain for wet deposition. The correlation coefficient between the simulated and the measured values of the daily average TGM at three monitoring sites varied between 0.48 and 0.64. When natural emissions were omitted, the correlation coefficients dropped to between 0.15 and 0.40. About 335 tonnes of mercury were deposited in the domain during the simulation period but overall, it acted as a net source of mercury and contributed about 21 tonnes to the global pool. The net deposition of mercury to the Great Lakes was estimated to be about 2.4 tonnes. The estimated deposition values were similar to those reported by other researchers.  相似文献   

13.
Measurements of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate mercury (PHg) have been conducted at Lulin Atmospheric Background Station (LABS) in Taiwan since April 2006. This was the first long-term free tropospheric atmospheric Hg monitoring program in the downwind region of East Asia, which is a major Hg emission source region. Between April 13, 2006 and December 31, 2007, the mean concentrations of GEM, RGM, and PHg were 1.73 ng m?3, 12.1 pg m?3, and 2.3 pg m?3, respectively. A diurnal pattern was observed for GEM with afternoon peaks and nighttime lows, whereas the diurnal pattern of RGM was opposite to that of GEM. Spikes of RGM were frequently observed between midnight and early morning with concurrent decreases in GEM and relative humidity and increases in O3, suggesting the oxidation of GEM and formation of RGM in free troposphere (FT). Upslope movement of boundary layer (BL) air in daytime and subsidence of FT air at night resulted in these diurnal patterns. Considering only the nighttime data, which were more representative of FT air, the composite monthly mean GEM concentrations ranged between 1.06 and 2.06 ng m?3. Seasonal variation in nighttime GEM was evident, with lower concentrations usually occurring in summer when clean marine air masses prevailed. Between fall and spring, air masses passed the East Asian continent prior to reaching LABS, contributing to the elevated GEM concentrations. Analysis of GEM/CO correlation tends to support the argument. Good GEM/CO correlations were observed in fall, winter, and spring, suggesting influence of anthropogenic emission sources. Our results demonstrate the significance of East Asian Hg emissions, including both anthropogenic and biomass burning emissions, and their long-range transport in the FT. Because of the pronounced seasonal monsoon activity and the seasonal variation in regional wind field, export of the Asian Hg emissions to Taiwan occurs mainly during fall, winter, and spring.  相似文献   

14.
Dry deposition samples were collected using a smooth surrogate surface at the Kaynaklar Campus of the Dokuz Eylul University in Izmir, Turkey. Concurrently ambient aerosol samples were collected. All samples were analyzed for anthropogenic and crustal trace elements. The average trace element concentrations and fluxes measured in this study were generally higher than those reported previously for urban and rural areas. The contribution of local terrestrial and anthropogenic sources were also investigated using enrichment factors (EFs) calculated relative to the local soil. Relatively lower EFs for ambient samples and high ambient concentrations indicated that the local soil was polluted and contributed significantly to ambient trace element concentrations. Deposition samples had higher EFs than the air samples. The EF sequences of trace elements were also different for deposition and ambient samples, probably due to the fact they have different mass median diameters and deposition velocities. The overall dry deposition velocities for trace elements calculated by dividing the particulate fluxes measured with the surrogate surfaces by ambient concentrations ranged from 0.6 (Al) to 6.2 cm s−1 (Fe). The agreement between the experimental dry deposition velocities determined in this study and the previously reported ones using similar techniques for trace elements was good.  相似文献   

15.
Changes in deposition of gaseous divalent mercury (Hg(II)) and particulate mercury (Hg(p)) in New Hampshire due to changes in local sources from 1996 to 2002 were assessed using the Industrial Source Complex Short Term (ISCST3) model (regional and global sources and Hg atmospheric reactions were not considered). Mercury (Hg) emissions in New Hampshire and adjacent areas decreased significantly (from 1540 to 880 kg yr−1) during this period, and the average annual modeled deposition of total Hg also declined from 17 to 7.0 μg m−2 yr−1 for the same period. In 2002, the maximum amount of Hg deposition was modeled to be in southern New Hampshire, while for 1996 the maximum deposition occurred farther north and east. The ISCST3 was also used to evaluate two future scenarios. The average percent difference in deposition across all cells was 5% for the 50% reduction scenario and 9% for the 90% reduction scenario.  相似文献   

16.
Bulk depositions and surface soil were collected in a suburban area, near the Adriatic Sea, in order to assess the contribution of a municipal solid waste incinerator to the area’s total contamination with polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs and PCDFs). Samples were collected at two sites, situated in the area most affected by plant emissions (according to the results of the Calpuff air dispersion model), and at an external site, considered as a reference. Results show that the studied area is subject to low contamination, as far as these compounds are concerned. Deposition fluxes range from 14.3 pg m−2 d−1 to 89.9 pg m−2 d−1 (0.75 pg-TEQ m−2 d−1 to 3.73 pg-TEQ m−2 d−1) and no significant flow differences are observed among the three monitored sites. Total soil concentration amounts to 93.8 ng kg−1 d.w. and 1.35 ng-TEQ kg−1 d.w, on average, and confirms a strong homogeneity in the studied area. Furthermore, from 2006 to 2009, no PCDD/Fs enrichment in the soil was noticed. Comparing the relative congener distributions in environmental samples with those found in stack emissions from the incineration plant, significant differences are observed in the PCDD:PCDF ratio and in the contribution of the most chlorinated congeners. From this study we can conclude that the incineration plant is not the main source of PCDD/Fs in the studied area, which is apparently characterized by a homogeneous and widespread contamination situation, typical of an urban area.  相似文献   

17.
A modeling system that includes a global chemical transport model (CTM) and a nested continental CTM (TEAM) was used to simulate the atmospheric transport, transformations and deposition of mercury (Hg). Three scenarios were used: (1) a nominal scenario, (2) a scenario conducive to local deposition and (3) a scenario conducive to long-range transport. Deposition fluxes of Hg were analyzed at three receptor locations in New York State. For the nominal scenario, the anthropogenic emission sources (including re-emission of deposited Hg) in New York State, the rest of the contiguous United States, Asia, Europe, and Canada contributed 11-1, 25-9, 13-19, 5-7, and 2-5%, respectively to total Hg deposition at these three receptors. Natural sources contributed 16-4%. The results from the local deposition and long-range transport scenarios varied only slightly from these results. However, there are still uncertainties in our understanding of the atmospheric chemistry of Hg that are likely to affect these estimates of local, regional and global contributions. Comparison of model simulation results with data from the Mercury Deposition Network suggests that local and regional contributions may currently be overestimated.  相似文献   

18.
A panel of international experts was convened in Madison, Wisconsin, in 2005, as part of the 8th International Conference on Mercury as a Global Pollutant. Our charge was to address the state of science pertinent to source attribution, specifically our key question was: "For a given location, can we ascertain with confidence the relative contributions of local, regional, and global sources, and of natural versus anthropogenic emissions to mercury deposition?" The panel synthesized new research pertinent to this question published over the past decade, with emphasis on four major research topics: long-term anthropogenic change, current emission and deposition trends, chemical transformations and cycling, and modeling and uncertainty. Within each topic, the panel drew a series of conclusions, which are presented in this paper. These conclusions led us to concur that the answer to our question is a "qualified yes," with the qualification being dependent upon the level of uncertainty one is willing to accept. We agreed that the uncertainty is strongly dependent upon scale and that our question as stated is answerable with greater confidence both very near and very far from major point sources, assuming that the "global pool" is a recognizable "source." Many regions of interest from an ecosystem-exposure standpoint lie in between, where source attribution carries the greatest degree of uncertainty.  相似文献   

19.

In order to better understand air pollution in deve-loping regions, such as China, it is important to investigate the wet deposition behavior of atmospheric trace metals and its sources in the subtropical watershed. This paper studies the seasonal change of trace metal concentrations in precipitation and other potential sources in a typical subtropical watershed (Jiazhuhe watershed) located in the downstream of the Yangtze River of China. The results show that typical crustal elements (Al, Fe) and trace element (Zn) have high seasonal variation patterns and these elements have higher contents in precipitation as compared to other metals in Jiazhuhe watershed. In addition, there is no observed Pb in base flow in this study, and the concentration magnitudes of Al, Ba, Fe, Mn, Sr, and Zn in base flow are significantly higher than that of other metals. During different rainfall events, the dynamic export processes are also different for trace metals. The various trace metals dynamic export processes lead to an inconsistent mass first flush and a significant accumulative variance throughout the rainfall events. It is found that in this region, most of the trace metals in precipitation are from anthropogenic emission and marine aerosols brought by typhoon and monsoon.

  相似文献   

20.
A new active biomonitoring tool, keeping alive mosses for 2 months, had demonstrated the buffering action of the water presence on the biological activity of three moss species (chlorophyll fluorescence induction method on Pleurozium schreberi, Scleropodium purum, Eurhynchium praelongum). The two more resistant mosses were exposed on four different sites with parallel exposure of monthly bulk collectors during three successive periods of 2 months. The coarse and sedimentable particles of bulk collectors were separated into different size classes (> 1 mm; 1000-200 microm; 200-40 microm; 40-20 microm). Dry depositions and mosses were analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for a stock (microg g(-1)- fluxes (microg m(-2) t(-1)) conversion. The "moss plate" allowed relative site (Ba, Cs, Sb, Sr, U) and species (Pb, Sb, Ti, V) comparisons. Two months were enough for a significant enrichment (Ba, Cd, Pb, Sb, Ti, U, V). Good explicative models were elaborated for Ba, Pb, Sb and Ti (r2 > 70%) including categorical (sites, moss species) and quantitative variables (fluxes of particles size classes). Entire and intact shoots of Scleropodium purum were analysed by detected synchrotron radiation induced X-ray fluorescence (SXRF). The in vivo distribution of the multi-elemental short term enrichment along the moss stem was mainly localized in the plant older parts (Pb, Ti, Cl, Se).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号