首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Studies involving carbon monoxide (CO) exposure assessment are mainly based on measurements at outdoor fixed sites or in various indoor micro-environments. Few studies have been based on personal exposure measurements. In this paper, we report results on personal measurements of CO in five European cities and we investigate determinants which may influence this personal exposure.Within the multi-centre European EXPOLIS study, personal exposure to CO, measured every minute for 48 h, of 401 randomly selected study participants (mainly non-smokers) was monitored in Athens, Basle, Helsinki, Milan and Prague. Each participant also completed a time-microenvironment-activity diary and an extended questionnaire. In addition, for the same time period, ambient levels of CO from fixed site stations were collected.There are significant differences in both personal exposure and ambient levels within the five cities, ranging from high values in Milan and Athens to low in Helsinki. Ambient levels are a significant correlate and determinant of CO 48-h personal exposure in all cities. From the other determinants studied (time spent in street traffic, time of exposure to ETS and time of exposure to gas burning devices) none was consistently significant for all cities. Change of the ambient CO levels from the 25th to the 75th percentile of its distribution resulted in a 1.5–2 fold increase of 48-h personal exposure. Short time personal exposure was also studied in order to assess the influence of specific sources. Exposure levels were significantly higher when participants were in street traffic and in indoor locations in the presence of smokers.Personal 48-h exposure of non-smokers to CO varies among urban populations depending primarily on the ambient levels. For a CO source to be a significant determinant of the personal 48-h CO exposure, it has to affect the levels of CO in the person's proximity for an adequate length of time. Activities of individuals affect shorter term personal exposure.  相似文献   

2.
In-vehicle carbon monoxide (CO) concentration profiles were monitored in a passenger vehicle driven along a heavily traveled route of a commercial/residential area of Beirut, Lebanon, under several ventilation modes. Trips were conducted during morning rush hours in spring and summer time. Concomitant monitoring of car-exterior CO level, ambient CO level and wind speed was also undertaken. The highest mean CO exposure was experienced for the “windows closed, vents closed” and “windows closed, AC on recirculation” ventilation settings, with mean CO levels of 37.4 and 30.8 ppm, respectively, exceeding the 1-h air quality guidelines. The exposure was less significant for other ventilation modes with respective mean values of 10.819ppm. Mean car-exterior CO levels were lower than the 1-h air quality guidelines, but exceeded the 8-h CO exposure guidelines. Ambient CO levels were low and non-representative of the personal exposure of individuals neither inside nor in the vicinity of road vehicles. In-vehicle CO levels revealed moderate to good correlations to out-vehicle CO levels for ventilation modes allowing for outdoor air intake, and no correlation to ambient CO levels and wind speed. Infiltration as a result of indoor–outdoor air exchange and intrusion from engine combustion/exhaust infiltration constituted the main sources of observed in-vehicle CO levels.  相似文献   

3.
Abstract

This paper focuses on the auto commuting micro-environment and presents typical carbon monoxide (CO) concentrations to which auto commuters in central Riyadh, Saudi Arabia were exposed. Two test vehicles traveling over four main arterial roadways were monitored for inside and outside CO levels during eighty peak and off-peak hours extending over an eight month period. The relative importance of several variables which explained the variability in CO concentrations inside autos was also assessed. It was found that during peak hours auto commuters were exposed to mean CO levels that ranged from 30 to 40 ppm over trips that typically took between 25 to 40 minutes. The mean ratio of inside to outside CO levels was 0.84. Results of variance component analyses indicated that the most important variables affecting CO concentrations inside autos were, in addition to the smoking of vehicle occupants, traffic volume, vehicle speed, period of day and wind velocity. An increase in traffic volume from 1,000 to 5,000 vehicles per hour (vph) increased mean CO level exposure by 71 percent. An increase in vehicle speed from 14 to 55 km/h reduced mean CO exposure by 36 percent. The number of traffic interruptions had a moderate effect on mean concentrations of CO inside vehicles.  相似文献   

4.
Vehicle exhaust is a major source of air pollution in metropolitan cities. Commuters are exposed to high traffic-related pollutant concentrations. Public transportation is the most popular commuting mode in Hong Kong and there are about 10.8 million passenger trips every day. Two-thirds of them are road commuters. An extensive survey was conducted to measure carbon monoxide in three popular passenger commuting modes, bus, minibus, and taxi, which served, respectively, 3.91 million, 1.76 million and 1.31 million passenger trips per day in 1998. Three types of commuting microenvironments were selected: urban–urban, urban–suburban and urban–rural. Results indicated that in-vehicle CO level increased in the following order: bus, minibus and taxi. The overall average in-vehicle CO level in air-conditioned bus, minibus and taxi were 1.8, 2.9 and 3.3 ppm, respectively. The average concentration level difference between air-conditioned buses (1.8 ppm) and non-air-conditioned buses (1.9 ppm) was insignificant. The fluctuation of in-vehicle CO level of non-air-conditioned vehicle followed the variation of out-vehicle CO concentration. Our result also showed that even in air-conditioned vehicles, the in-vehicle CO concentration was affected by the out-vehicle CO concentration although there exists a smoothing out effect. The in-vehicle CO level was the highest in urban–suburban commuting routes and was followed by urban–urban routes. The in-vehicle CO level in urban–rural routes was the lowest. The highest CO level was recorded after the vehicle traversed through tunnel. The average CO exposure of a commuter in tunnel can be 2–3 times higher than that at the other roads. The CO exposure level of public road transportation commuters in Hong Kong was lower than most other cities. Factors governing the CO levels were also discussed.  相似文献   

5.
Elevated levels of atmospheric CO2 are expected to increase photosynthetic rates of C3 tree species, but it is uncertain whether this will result in an increase in wetland seedling productivity. Separate short-term experiments (12 and 17 weeks) were performed on two wetland tree species, Taxodium distichum and Acer rubrum, to determine if elevated CO2 would influence the biomass responses of seedlings to flooding. T. distichum were grown in replicate glasshouses (n = 2) at CO2 concentrations of 350 or 700 ppm. and A. rubrum were grown in growth chambers at CO2 concentrations of 422 or 722 ppm. Both species were grown from seed. The elevated CO2 treatment was crossed with two water table treatments, flooded and non-flooded. Elevated CO2 increased leaf-level photosynthesis, whole-plant photosynthesis, and trunk diameter of T. distichum in both flooding treatments, but did not increase biomass of T. distichum or A. rubrum. Flooding severely reduced biomass, height, and leaf area of both T. distichum and A. rubrum. Our results suggest that the absence of a CO2-induced increase in growth may have been due to an O2 limitation on root production even though there was a relatively deep (approximately 10 cm) aerobic soil surface in the non-flooded treatment.  相似文献   

6.
Exposures to adequate environmental levels of CO will increase COHb concentrations in human subjects. The amount of this increase is reasonably predictable, and must be considered in relation to exposure to CO in inhaled cigarette smoke as well as to occupational and domestic exposures. The increase in body COHb will result in some degree of impairment of tissue oxygenation.

Methods for estimating COHb levels in large populations are relatively simple. The assumption that an exposure to 30 ppm CO for eight hours will produce on the average, an increase in COHb of 5%, has been substantiated by available data.

Exposure for five hours to between 10 and 12 ppm of CO has been shown to increase the COHb levels in nonsmokers by at least 0.5%. Such an increase adds appreciably to the body burden of COHb in those who do not already have such a body burden from cigarette smoking. Longer exposures could have produced a somewhat greater increase.

Apart from increases in COHb, three possible effects have been a source of major consideration in epidemiologic studies. The first is the production of some persistent toxic reaction. This possibility has been examined with respect to occupational exposure, and the evidence for the occurrence of such a condition is insufficient.

The possible contribution of ambient community CO exposure to the mortality of persons hospitalized with myocardial infarction has been investigated. The evidence suggests that daily average CO values in excess of about 10 ppm may be associated with an increase in mortality in hospitalized patients with myocardial infarction. Substantiation of this impression will require a study of the prognosis of myocardial infarction patients in relationship to COHb levels measured at admission to the hospital.

Finally, in two studies, persons driving motor vehicles which were involved in accidents had higher COHb levels than "control" populations. Controls were not ideal, however. Possible mechanisms by which CO might affect the ability to drive a motor vehicle is suggested in the available data on CO effects upon visual sensitivity, psychological test performance and accurate estimation of time intervals. As little as 2 percent COHb can produce these effects in laboratory studies, and the available epidemiologic information confirms that such an increase in COHb levels among drivers might influence the frequency of accidents.

Specific areas where research is indicated to clarify uncertainties relating to health effects of CO are: 1. The increment in COHb which can be produced by exposures to an average of 20 ppm CO for an eight hour period and the increment which can be produced by 15 ppm for such a period and by 10 ppm for up to twenty-four hours.

2. The relationship of ambient CO levels and of COHb levels to the survival of hospitalized patients with myocardial infarction.

3. The prognostic significance with respect to cardiovascular conditions of elevated levels of COHb.

4. The relationship, if any, between ambient CO and COHb levels and the occurrence of motor vehicle accidents when weather and driving conditions, cigarette smoking, alcohol and drug use, and other factors are adjusted and controlled.

  相似文献   

7.
Open-top chambers (OTCs) were used to evaluate the effects of moderately elevated O3 (40-50 ppb) and CO2 (+100 ppm) and their combination on N2O, CH4 and CO2 fluxes from ground-planted meadow mesocosms. Bimonthly measurements in 2002-2004 showed that the daily fluxes of N2O, CH4 and CO2 reacted mainly to elevated O3, while the fluxes of CO2 also responded to elevated CO2. However, the fluxes did not show any marked response when elevated O3 and CO2 were combined. N2O and CO2 emissions were best explained by soil water content and air and soil temperatures, and they were not clearly associated with potential nitrification and denitrification. Our results suggest that the increasing O3 and/or CO2 concentrations may affect the N2O, CH4 and CO2 fluxes from the soil, but longer study periods are needed to verify the actual consequences of climate change for greenhouse gas emissions.  相似文献   

8.
Although airborne pollutants in urban buses have been studied in many cities globally, long-distance buses running mainly on highways have not been addressed in this regard. This study investigates the levels of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO2) and particulate matter (PM) in the long-distance buses in Taiwan. Analytical results indicate that pollutants levels in long-distance buses are generally lower than those in urban buses. This finding is attributable to the driving speed and patterns of long-distance buses, as well as the meteorological and geographical features of the highway surroundings. The levels of benzene, toluene, ethylbenzene and xylene (BTEX) found in bus cabins exceed the proposed indoor VOC guidelines for aromatic compounds, and are likely attributable to the interior trim in the cabins. The overall average CO level is 2.3 ppm, with higher average level on local streets (2.9 ppm) than on highways (2.2 ppm). The average CO2 level is 1493 ppm, which is higher than the guideline for non-industrial occupied settings. The average PM level in this study is lower than those in urban buses and IAQ guidelines set by Taiwan EPA. However, the average PM10 and PM2.5 is higher than the level set by WHO. Besides the probable causes mentioned above, fewer passenger movements and less particle re-suspension from bus floor might also cause the lower PM levels. Measurements of particle size distribution reveal that more than 75% of particles are in submicron and smaller sizes. These particles may come from the infiltration from the outdoor air. This study concludes that air exchange rates in long-distance buses should be increased in order to reduce CO2 levels. Future research on long-distance buses should focus on the emission of VOCs from brand new buses, and the sources of submicron particles in bus cabins.  相似文献   

9.
裸土风蚀型开放源起尘机制研究进展   总被引:3,自引:0,他引:3  
中国北方多个城市空气颗粒物来源解析结果表明,开放源是空气颗粒物污染的主要来源,裸土风蚀型开放源是主要的排放源类.对裸土风蚀型开放源起尘机制进行了诠释,提出了裸土风蚀型开放源、裸土风蚀起尘、裸土风蚀尘的概念,并对裸土风蚀型开放源的风蚀影响因素进行了研究,为城市空气质量达标及空气颗粒物污染防治提供科学参考.  相似文献   

10.
Anthropogenic and natural CO2 emission sources in an arid urban environment   总被引:2,自引:0,他引:2  
Recent research has shown the Phoenix, AZ metropolitan region to be characterized by a CO2 dome that peaks near the urban center. The CO2 levels, 50% greater than the surrounding non-urban areas, have been attributed to anthropogenic sources and the physical geography of the area. We quantified sources of CO2 emissions across the metropolitan region. Anthropogenic CO2 emission data were obtained from a variety of government and NGO sources. Soil CO2 efflux from the dominant land-use types was measured over the year. Humans and automobile activity produced more than 80% input of CO2 into the urban environment. Soil CO2 efflux from the natural desert ecosystems showed minimal emissions during hot and dry periods, but responded rapidly to moisture. Conversely, human maintained vegetation types (e.g. golf courses, lawns, irrigated agriculture) have greater efflux and are both temperature and soil moisture dependent. Landfills exhibited the most consistent rates, but were temperature and moisture independent. We estimate the annual CO2 released from the predominant land-use types in the Phoenix region and present a graphical portrayal of soil CO2 emissions and the total natural and anthropogenic CO2 emissions in the metropolitan region using a GIS-based approach. The results presented here do not mimic the spatial pattern shown in previous studies. Only, with sophisticated mixing models will we be able to address the total effect of urbanization on CO2 levels and the contribution to regional patterns.  相似文献   

11.
Carbon monoxide, the most abundant air pollutant found in the atmosphere generally exceeds that of all other pollutants combined (excluding C02). An estimated tonnage of >87 X 106 of CO was emitted in the United States from major technological sources alone during 1966. More than 90% of the total CO emitted from fossil fuels is derived from gasoline powered motor vehicles. Other sources of CO include emissions from coal and fuel oil burning, aircraft and open burning. Some CO is also formed by certain vegetation and marine invertebrates (siphonophores). Chemical reactions of CO in the upper and lower atmosphere are discussed. Chemical oxidation of CO in the lower atmosphere by molecular oxygen is very slow. The exact duration of CO in the lower atmosphere is not known with certainty; however, the mean residence time has been variously estimated to be between 0.3 and 5.0 years. In the absence of scavenging processes the estimated world-wide CO emission would be sufficient to raise the’atmospheric level by 0.03 ppm per year, yet the background levels of CO in clean air do not appear to be increasing. Several potential sinks are discussed. Knowledge of the mechanism of process of removal of CO from the lower atmosphere is unsatisfactory; the process, at the present time, cannot be identified with certainty.  相似文献   

12.
The concentration of PCBs in topsoils from five European cities was assessed and the highest levels were found in Glasgow (Scotland), followed by Torino (Italy), Aveiro (Portugal), Ljubljana (Slovenia) and Uppsala (Sweden). All cities showed the presence of local sources in addition to diffuse contamination from global atmospheric transport. The association of general soil parameters with PCBs in Glasgow and with heavier congeners in Torino and Ljubljana indicates that retention of these compounds is occurring. The profiles obtained resemble Aroclor 1254 and 1260, which are important local sources. Nevertheless, differences in PCB profiles were observed among cities, due to the combined effects of the age of the contamination (which determines the time available for volatilisation and degradation), different sources of PCBs and differences in climate (which influence volatilisation and deposition).  相似文献   

13.
To study individual and combined impacts of two important atmospheric trace gases, CO2 and O3, on C and N cycling in forest ecosystems; a multi-year experiment using a small-scale ponderosa pine (Pinus ponderosa Laws.) seedling/soil/litter system was initiated in April 1998. The experiment was conducted in outdoor, sun-lit chambers where aboveground and belowground ecological processes could be studied in detail. This paper describes the approach and methodology used, and presents preliminary data for the first two growing seasons. CO2 treatments were ambient and elevated (ambient + 280 ppm). O3 treatments were elevated (hourly averages to 159 ppb, cumulative exposure > 60 ppb O3, SUM 06 approximately 10.37 ppm h), and a low control level (nearly all hourly averages <40 ppb. SUM 06 approximately 0.07 ppm h). Significant (P < 0.05) individual and interactive effects occurred with elevated CO2 and elevated O3. Elevated CO2 increased needle-level net photosynthetic rates over both seasons. Following the first season, the highest photosynthetic rates were for trees which had previously received elevated O3 in addition to elevated CO2. Elevated CO2 increased seedling stem diameters, with the greatest increase at low O3. Elevated CO2 decreased current year needle % N in the summer. For 1-year-old needles measured in the fall there was a decrease in % N with elevated CO2 at low O3, but an increase in % N with elevated CO2 at elevated O3. Nitrogen fixation (measured by acetylene reduction) was low in ponderosa pine litter and there were no significant CO2 or O3 effects. Neither elevated CO2 nor elevated O3 affected standing root biomass or root length density. Elevated O3 decreased the % N in coarse-fine (1-2 mm diameter) but not in fine (< 1 mm diameter) roots. Both elevated CO2 and elevated O3 tended to increase the number of fungal colony forming units (CFUs) in the AC soil horizon, and elevated O3 tended to decrease bacterial CFUs in the C soil horizon. Thus, after two growing seasons we showed interactive effects of O3 and CO2 in combination, in addition to responses to CO2 or O3 alone for a ponderosa pine plant/litter/soil system.  相似文献   

14.
Vehicular exhaust emission has gradually become the major air pollution source in modern cities and traffic related exposure is found to contribute significantly to total human exposure level. A comprehensive survey was conducted from November 1995 to July 1996 in Hong Kong to assess the effect of traffic-induced air pollution inside different commuting microenvironments on commuter exposure. Microenvironmental monitoring is performed for six major public commuting modes (bus, light bus, MTR, railway, tram, ferry), plus private car and roadside pavement. Traffic-related pollutants, CO, NOx, THC and O3 were selected as the target pollutants. The results indicate that commuter exposure is highly influenced by the choice of commuting microenvironment. In general, the exposure level in decreasing order of measured pollutant level for respective commuting microenvironments are: private car, the group consisting light bus, bus, tram and pavement, MTR and train, and finally ferry. In private car, the CO level is several times higher than that in the other microenvironments with a trip averaged of 10.1 ppm and a maximum of 24.9 ppm. Factors such as the body position of the vehicle, intake point of the ventilation system, fuel used, ventilation, transport mode, road and driving conditions were used in the analysis. Inter-microenvironment, intra-microenvironment and temporal variation of CO concentrations were used as the major indicator. The low body position and low intake point of the ventilation system of the private car are believed to be the cause of higher intake of exhaust of other vehicles and thus result in high pollution level in this microenvironment. Compared with other metropolis around the world and the Hong Kong Air Quality Objectives (HKAQO), exposure levels of commuter to traffic-related air pollution in Hong Kong are relatively low for most pollutants measured. Only several cases of exceedence of HKAQO by NO2 were recorded. The strong prevailing wind plus the channeling effect created by the harbor, the fuel used, the relative abundance of new cars and the successful implementation of the vehicle emission control program are factors that compensate the effect of the emission source strength and thus lead to low exposure levels.  相似文献   

15.
Guenther A 《Chemosphere》2002,47(8):837-844
From November 1998 to October 2000, measurements of soil respiration were performed on the Spanish plateau for two patches of non-irrigated barley, one managed with conventional tillage (CT) and the other with reduced tillage (RT). Soil CO2 flux showed seasonal variation on both patches, with an increase from March to October, peaking in May, and a decrease during the winter period by a factor of around 2. The mean value for both combined years was 2.03 and 1.70 micromol m(-2) S(-1), in the CT and RT patches, respectively. In order to analyse the influence of RT on soil CO2 flux, two tests were performed. The first one was the Kruskal-Wallis test to compare whether the differences between the medians in both patches were statistically significant. The results obtained revealed statistically significant differences during the second year, at a 85% and 95% significance level, use being made of annual data and that recorded during the period of maximum interest, March-October, respectively. The decrease in soil respiration in the RT patch was around 24%. The second test was aimed at describing and comparing the influence of soil temperature on soil CO2 flux. By using the data of both patches recorded during the first year, an empirical equation on 10-cm soil temperature was fitted and tested on the data corresponding to the second year in each of the patches. Then, a comparison between the medians of the differences between the estimated and observed values was again performed by means of the Kruskal-Wallis test. The over-prediction of the model in the RT patch, statistically significant at a 90% significance level, was roughly 23%, confirming again the decrease in soil respiration one year after this agricultural management practice had been implemented.  相似文献   

16.
The greater the use of energy in the transportation sectors, the higher the emission of carbon monoxide (CO), and hence inevitable harm to environment and human health. In this concern, measuring and predicting of CO emission from transportation sector—especially large cities—is important as it constitute 90 % of all CO emission. Many urban cities in developing world have not properly experienced such measurements or predictions. In this paper, for the first time, field measurements of traffic characteristics data and corresponding CO concentration have been performed for developing a model for predicting CO emissions from transportation sector for New Borg El Arab (NBC), Egypt. The performance of Swiss-German Handbook Emission Factors for Road Transport (HBEFA v3.1) model has been assessed for predicting the CO concentration at roadside in the study area. Results indicated that HBEFA v3.1 underestimate emission figures. The developed CO dynamic emission model involves the traffic flow characteristics with roadside CO concentrations. Acceptable representation of measured CO concentration has been shown by the developed dynamic CO emission model which introduces R 2?=?0.77, mean biases and frictional biases of ?0.27 mg m?3 and 0.09, respectively. A comparison between predicted CO concentrations using HBEFA v3.1 and the promoted dynamic model indicate that HBEFA v3.1 estimates CO emission concentrations in the study area with a mean error and frictional biases 159.26 and 233.33 %, respectively, higher than those of the developed model.  相似文献   

17.
Olajire AA  Azeez L  Oluyemi EA 《Chemosphere》2011,84(8):1044-1051
We measured toxic air pollutants along Oba Akran road in Lagos to evaluate pedestrian exposure. PM10, CO, O3, NO2, SO2, CH4, noise, wind velocity and temperature were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM10 (with an average of 274.6 μg m−3 for all samples) and CO (with an average of 19.27 ppm for all samples) was relatively high. CO is a traffic-related pollutant, so the influence of the local traffic emissions on CO levels is strong. The high concentration of the PM10 measured at the three environments also suggests that the traffic is a major source of ultrafine particles. The overall average concentrations for the 72-day experimental period for SO2, NO2 and O3 are 101.2, 62.5 and 0.32 ppb respectively, all of which are below the US national ambient air quality standards. Strong traffic impacts can be observed from the concentrations of some of these pollutants measured in these three environments. Most clear is a reflection of diesel truck traffic activity rich in black carbon concentrations. The diurnal variation of O3 and NO2 also showed that NO2 was depleted by photochemically formed O3 during the day and replenished at night as O3 was destroyed. A multivariate statistical analysis (Principal Component Analysis, Factor Analysis) has been applied to a set of data in order to determine the contribution of different sources. It was found that the main principal components, extracted from the air pollution data, were related to gasoline combustion, oil combustion and ozone interactions.  相似文献   

18.
Carbon monoxide (CO) exposures were measured inside a motor vehicle during 88 standardized drives on a major urban arterial highway, El Camino Real (traffic volume of 30,500-45,000 vehicles per day), over a 13-1/2 month period. On each trip (lasting between 31 and 61 minutes), the test vehicle drove the same 5.9-mile segment of roadway in both directions, for a total of 11.8 miles, passing through 20 intersections with traffic lights (10 in each direction) in three California cities (Menlo Park, Palo Alto, and Los Altos). Earlier tests showed that the test vehicle was free of CO intrusion. For the 88 trips, the mean CO concentration was 9.8 ppm, with a standard deviation of 5.8 ppm. Of nine covariates that were examined to explain the variability in the mean CO exposures observed on the 88 trips (ambient CO at two fixed stations, atmospheric stability, seasonal trend function, time of day, average surrounding vehicle count, trip duration, proportion of time stopped at lights, and instrument type), a fairly strong seasonal trend was found. A model consisting of only a single measure of traffic volume and a seasonal trend component had substantial predictive power (R2 = 0.68); by contrast, the ambient CO levels, although partially correlated with average exposures, contributed comparatively little predictive power to the model. The CO exposures experienced while drivers waited at the red lights at an intersection ranged from 6.8 to 14.9 ppm and differed considerably from intersection to intersection. A model also was developed to relate the short-term variability of exposures to averaging time for trip times ranging from 1 to 20 minutes using a variogram approach to deal with the serial autocorrelation. This study shows: (1) the mass balance equation can relate exterior CO concentrations as a function of time to interior CO concentrations; (2) CO exposures on urban arterial highways vary seasonally; (3) momentary CO exposures experienced behind red lights vary with the intersection; and (4) an averaging time model can simulate exposures during short trips (20 minutes or less) on urban arterial highways.  相似文献   

19.
In the context of global climate change, an understanding of the long-term effects of increasing concentrations of atmospheric trace gases (carbon dioxide, CO(2), ozone, O(3), oxides of nitrogen, NO(x) etc.) on both cultivated and native vegetation is of utmost importance. Over the years, under field conditions, various trace gas-vegetation exposure methodologies with differing advantages and disadvantages have been used. Because of these variable criteria, with elevated O(3) or CO(2) levels, at the present time the approach of free-air experimental-release of the gas into study plots is attracting much attention. However, in the case of CO(2), this approach (using 15 m diameter study plot with a single circular array of vent pipes) has proven to be cost prohibitive (about 59000-98000 dollars/year/replicate) due to the consumption of significant quantities of the gas to perform the experiment (CO(2) level elevated to 400 ppm above the ambient). Therefore, in this paper, we present a new approach consisting of a dual, concentric exposure array of vertical risers or vent pipes. The purpose of the outer array (17 m diameter) is to vent ambient air outward and toward the incoming wind, thus providing an air curtain to reduce the velocity of that incoming wind to simulate the mode or the most frequently occurring wind speed at the study site. The inner array (15 m diameter) vents the required elevated levels of trace gases (CO(2), O(3), etc.) into the study plot. This dual array system is designed to provide spatial homogeneity (shown through diffusion modeling) of the desired trace-gas levels within the study plot and to also reduce its consumption. As an example, while in the single-array free-air CO(2)-release system the consumption of CO(2) to elevate its ambient concentration by 400 ppm is calculated to be about 980 tons/year/replicate, it is estimated that in the dual array system it would be approximately 590 tons/year/replicate. Thus, the dual array system may provide substantial cost savings (24000-39000 dollars/year/replicate) in the CO(2) consumption (60-100 dollars/ton of CO(2)) alone. Similarly, benefits in the requirements of other trace gases (O(3), NO(x), etc.) are expected, in future multivariate studies on global climate change.  相似文献   

20.
In air quality monitoring studies, continuous sampling is capable of reflecting real time variation of gas levels, however, with a margin of uncertainty related to the response time of the sensor and to the speed of concentration fluctuation. In contrast, grab sampling allows the determination of average gas concentration over the whole sampling period eliminating thus the uncertainties associated with the continuous method. As studies of in-vehicle carbon monoxide (CO) exposure often show rapidly fluctuating CO levels and are increasingly using the continuous electrochemical sensing method, the present activity aims at validating the suitability of the latter method for this monitoring task. For this purpose, an electrochemical CO sensing monitor was used to continuously monitor CO level inside and outside of a vehicle moving in an urban area, and to analyze the content of concomitantly taken grab samples. Trip-average CO levels measured using the two testing methods were compared. For CO levels higher than the instrument detection limit (1 ppm), the observed percent difference between continuous and grab sampling results varied within a fairly acceptable range (0.6–15.4%). The regression of continuous sampling data against grab sampling data revealed an average error of 6.9%, indicating the suitability of the continuous electrochemical method for monitoring in-vehicle and exterior average CO concentration under typical urban traffic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号