首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
通过航空红外遥感北京下垫面温度资料分析,得到冬季静稳天气下城郊与城市内部不同地表的温度特征,提供一些对城市温度环境研究用常规观测难以得到的资料和分析结果。  相似文献   

2.
在大气扩散研究中,为了解边界层中温度和风等要素的分布情况,可采用直接探测或间接探测(遥感)两种方法。直接探测法其仪器结构较简单,精度较高,是当前国内研究的主要探测手段。其中系留气球携带仪器的探测方法,简便易行,高度可达五百米以上,应用很普遍。1976年前,国内几个有关单  相似文献   

3.
利用张家口 1981-2018年14个站点的温度数据,通过数理统计获得月、季数据并进行分析,选用Mann-Kendall非参数检验法进行突变检测,同时运用小波分析(wavelet analysis)方法,揭示了隐藏在时间序列中的变化周期,分析了冬季张家口地区的温度时空分布特征.结果显示,张家口地区温度呈上升趋势.坝上地...  相似文献   

4.
针对北京地区2020年冬季疫情防控期(1月24至2月29)的空气质量及两次持续性重污染过程进行分析,探究了该时段的大气污染特征及其气象影响.与过去5a同期相比,2020年疫情防控期间北京冷空气强度偏弱,活动频次偏少50%,气温偏高0.73℃,风速和混合层高度偏低17.8%和32.5%,湘对湿度和露点温度增加60.9%和...  相似文献   

5.
本文应用八十年代初期三年冬季的二氧化硫和气象资料,讨论了北京冬季二氧化硫的日变化和日际变化特征与象候条件特点,可供研究空气污染与气象的关系和监测防治大气污染参考。  相似文献   

6.
北京冬季雾日大气污染结构特征   总被引:4,自引:1,他引:3  
运用激光雷达和大气污染监测网络观测了2007年2月北京地区2次平流雾大气污染过程. 通过分析雾生消过程中大气颗粒物消光性的垂直结构、地面大气污染物质量浓度的水平分布及其演变,研究了北京市雾日大气污染的空间结构特征. 结果表明:雾生成前及持续阶段大气扩散条件较差,污染积累明显,但高湿度雾能加速污染物的湿沉降,雾生成后污染会略有回落. 雾生成前后大气污染垂直分布变化显著,但静稳气象条件下,大气污染的水平分布受雾的影响较小. 相对湿度是影响雾日大气污染变化的重要因素,决定了污染物湿沉降量的大小. 在2007年2月21—22日的平流雾过程中,SO2和NO2浓度与雾生成前相比分别下降了56%与47%,湿沉降量分别为48.0和30.8 g/km2;而在25—27日的平流雾过程中,SO2和NO2湿沉降量分别为16.3和14.3 g/km2.   相似文献   

7.
北京城区冬季降尘微量元素分布特征及来源分析   总被引:2,自引:8,他引:2  
降尘含量是评价大气污染程度的指标之一.降尘中的微量元素尤其是重金属,其质量分数超标会引发生态环境风险及人体健康风险.为了研究北京城区冬季大气降尘中微量元素分布特征以及其中的重金属污染状况及其来源,于2013年11月至2014年3月收集了北京城区及周边大气降尘样品49份.用Elan DRC II型电感耦合等离子体质谱仪(ICP-MS)测试了样品中40种微量元素的质量分数,结果表明,一半以上的微量元素在降尘中的质量分数不足10 mg·kg-1,约四分之一的微量元素其质量分数在10~100 mg·kg-1之间,Pb、Zr、Cr、Cu、Zn、Sr、Ba等7种元素的质量分数超过100 mg·kg-1.北京城区冬季降尘中Pb、Cu、Zn、Bi、Cd和Mo的含量分别是同期地表土壤中相应元素含量的4.18、4.66、5.35、6.31、6.62和8.62倍,均超出土壤背景值的300%以上,人为活动对北京城区降尘微量重金属含量的贡献较大.通过Pearson相关分析、Kendall相关分析以及主成分分析对大气降尘以及其中的Cd、Mo、Nb、Ga、Co、Y、Nd、Li、La、Ni、Rb、V、Ce、Pb、Zr、Cr、Cu、Zn、Sr、Ba等20种主要微量元素的来源进行了探讨.研究发现,北京城区冬季降尘的来源主要由地壳来源(包括道路扬尘、建筑粉尘和远程传输的尘埃)和化石燃料燃烧(汽车尾气排放、煤炭燃烧、生物质燃烧和工业过程)构成.  相似文献   

8.
冬季北京城区大气重污染特征分析   总被引:1,自引:0,他引:1  
为研究北京市城区大气重污染特征,对2013年12月~2014年2月期间北京市6次大气重污染过程的PM2.5浓度水平、化学组成以及大气氧化性和气象要素特征进行了分析。结果表明,重污染日PM2.5平均质量浓度达到265.0μg/m3,是非重污染日的3.5倍。 PM2.5组分中NO3-,SO42-,NH4+和有机碳(OC)在重污染日的平均浓度分别是非重污染日的6.8,3.4,2.7和2.6倍。前3次过程中SO42-浓度最高,后3次过程中SO42-浓度与NO3-浓度接近。从气象要素来看,重污染期间的基本特征为地面温度升高、相对湿度增大、地面气压降低和风速减小。重污染日的能见度显著降低,平均能见度仅为非重污染日的34.4%。重污染日的大气氧化性明显增强,大气氧化剂OX平均浓度是非重污染日的1.5倍,(OC)/(EC)平均比值是非重污染日的1.6倍。  相似文献   

9.
以鲜鸡粪、蘑菇渣和污泥按照体积比3∶1∶1混合进行动态堆肥模拟试验.堆肥槽沿物料前进方向分为7个部分,对每个部分按等间距分别做5个水平方向上切分和5个垂直方向上切分,在形成的125个交叉点上进行温度监测.研究结果表明,第1天的混合物料温度在同一层中变异很小,不同层之间略有差异.随着动态过程的进行,同一层温度变异逐渐增大,从第一天相差1~3℃,增加到相差30~40℃,靠近墙体的堆料温度较低,远离墙体的温度较高.随着堆肥时间延长,差异增大.机械翻堆能起到通风的作用,同时使每一个堆方的堆料在纵向方向上上下混合,但达不到横向混匀,因此,靠近墙体两侧的堆料始终处于较低的温度,只有中部能达到较高的温度,以堆肥温度50℃作为无害化指标,自墙体向中心方向的1m为没有达到无害化厚度,无害化体积占堆肥总体积50%.整个动态堆肥过程符合二级动力学方程.  相似文献   

10.
利用安徽寿县地区2016年12月16~17日的观测资料与模拟资料,分析了一次夜间边界层低空急流对PM2.5扩散的影响.此过程中,急流分布范围广,强度大,最大风速可达10~12m/s,而且风向随高度有明显转向,高低层风向差可达90°.急流发展过程中,急流轴基本位于200m以下,急流的最小风速高度出现在400~800m之间.通过分析可知,对于不同高度,急流对污染物扩散的影响存在明显差异.地面至急流轴范围内,PM2.5总体减少.急流的出现使湍流混合明显增强,在湍流作用下污染物向上混合,使该层PM2.5显著减少,净质量通量的峰值可达-103×10-3μg/(m2·s).急流的水平输送可带来上风方较为清洁气团,同样减少了该层的PM2.5浓度.但与湍流作用相比其影响较小,净质量通量仅为-2.9×10-3μg/(m2·s).急流存在时,还会加强向下的垂直风速,在垂直输送作用下,上层污染物向下输送,增加了该层PM2.5浓度,净质量通量约为11×10-3μg/(m2·s).急流轴至风向转变高度之间,PM2.5总体增加.这是由于湍流作用将低层高浓度污染物输送至该层,使PM2.5浓度增加,净质量通量约为23.9×10-3μg/(m2·s);水平输送作用使该层PM2.5浓度略有增加,净质量通量约为2.3×10-3μg/(m2·s);而垂直输送作用带来了高处较为清洁的气团,减少了PM2.5浓度,净质量通量约为-6.6×10-3μg/(m2·s).风向转变高度至LLJ最小风速高度之间,PM2.5总体增加.湍流作用仍占主导,净质量通量约为17.8×10-3μg/(m2·s);垂直输送作用稍有贡献,净质量通量约为1.4×10-3μg/(m2·s);而水平输送起减少作用,净质量通量约为-3.7×10-3μg/(m2·s).  相似文献   

11.
该研究通过对冬季北京市地表水的p H、电导率、阴阳离子、TOC、有机氯农药(OCPs)含量调研,了解其水化学特征和质量现状。结果表明:北京地表水为弱碱性,p H范围为6.27~9.15,北京东南部湖群水的电导率要大于西北部湖群。Na+和Ca2+为主要阳离子,占总阳离子的78.2%(66%~87%),其平均值分别为69.6 mg/L和73.4 mg/L。SO42-和Cl-为主要阴离子,占总阴离子的86.7%(49%~98%),其平均值分别为126.2 mg/L和90.6 mg/L。绝大部分湖泊水体TOC含量小于10 mg/L,质量状况尚可,个别湖泊受到不同程度的OCPs污染。综合结果表明,由于水体周边人类活动频繁,扰动了北京城市水体的天然水化学特征,今后应在生态、工农业生产、生活等方面采取有效措施,控制水体污染。  相似文献   

12.
低空大气逆温及地面风速是影响空气质量变化的主要气象条件,特别是逆温的频率、强度制约着大气污染物聚积和扩散。定义了1km以下低空大气的温度层结强度。利用昆明L波段探空雷达加密数据,统计了2014—2018年08 h探空数据温度层结特征,分析了逆温的频率、强度和地面风速等气象要素与空气质量的相关性,建立基于Logistic判别方法的昆明空气质量指数和PM_(2.5)浓度的拟合模型。结果显示:基于定义的温度层结强度的统计,昆明1km以下低空大气整层的逆温发生频率10.7%,年平均强度0.13℃·(100m)~(-1),逆温的频率和强度月变化曲线与轻度污染及PM_(2.5)浓度的变化联系密切;温度层结强度和地面风速通过了α=0.05的相关系数显著性检验,与空气质量指数和PM_(2.5)浓度相关性好,最佳的气象要素因子的相关系数可达到0.3660;Logistic判别模型对轻度污染的拟合准确率在66.3%以上,优良空气的拟合准确率在72.5%以上;对PM_(2.5)浓度超标的拟合准确率在59.9%以上,PM_(2.5)一级浓度的拟合准确率在68.8%以上。  相似文献   

13.
北京2019年冬季一次典型霾污染特征与成因分析   总被引:1,自引:4,他引:1  
为研究北京冬季霾污染过程的污染特征和成因,以北京2019年12月一次典型PM2.5污染过程为分析对象,利用气溶胶垂直探测资料、边界层气象场和近地湍流资料,对霾不同污染阶段的特征与边界层理化特性的演变进行综合分析.结果表明:①观测期间北京共经历两次污染生消,历时5 d,PM2 5小时浓度最高220μg?m-3,超过重度污...  相似文献   

14.
北京冬季一次重污染过程的污染特征及成因分析   总被引:9,自引:0,他引:9  
为了研究北京冬季重污染过程的污染特征及形成原因,选取2013年1月9~15日一次典型重污染过程,对污染期间气象要素、大气颗粒物组分特征和天气背景场进行综合研究.结果表明,此次大气重污染过程中PM10和PM2.5平均质量浓度分别为347.7μg/m3和222.4μg/m3,均超过环境空气质量标准(GB3095-2012)中规定的日均二级浓度限值.重污染时段PM2.5中NH4+、NO3-和SO42-质量浓度之和占PM2.5质量浓度的44.0%,OC/EC的平均比值为5.44,说明二次无机离子和有机物对此次污染过程中PM2.5贡献较大.稳定的大气环流背景场、高湿度低风速的地面气象条件和低而厚的逆温层导致北京地区大气层结稳定,加上北京三面环山的特殊地形结构,是造成此次大气重污染过程的主要原因.  相似文献   

15.
大气有机污染物直接影响着人类的健康及其赖以生存的环境。为了研究北京冬季有机污染物日变化规律,在2014年1月8-20日连续采样12 d,每隔4 h采样1次。利用GC-MS测定了细颗粒物中有机组分浓度。研究结果表明,冬季有机组分月平均浓度(49.10±35.39)μg/m~3,共检测到5类有机污染物,分别是正构烷烃、一元酸、糖醇、二元酸、多环芳烃,分别占有机污染物的35%、25%、20%、13%、7%。5类有机污染中,正构烷烃与多环芳烃基本上呈现"单峰单谷"分布,脂肪酸、二元酸以及糖醇基本呈现"双峰单谷"分布,同时表明5类有机污染物与人类活动关系密切。通过比值法,可简单判定有机污染物的来源。  相似文献   

16.
在1979—1980年的冬季,我们试测了北京降水的酸度,其主要结果见附表。 由所得结果可见,整个冬季采暖期降水的pH值,除一次外,全部在6以上。未受污  相似文献   

17.

城市化发展导致不透水地表面积率大幅攀升,由此带来的一系列问题逐渐受到人们关注,夏季城市汇水区域地表产生高温径流后汇入下游受纳水体所造成的雨水径流热污染,对水生态、水环境造成不良影响的风险尤为突出。选取北京市典型汇水区域,对2021—2022年多场降雨径流出流温度进行监测与分析,并对气象因素、下垫面温度及管道内径流热量等数据进行同步采集,运用皮尔逊相关系数法分析其影响因素。结果表明:研究区域夏季降雨常出现雨水径流温度升高现象,降水量小于12.5 mm、降雨历时短于250 min的降雨场次更易于升温,升温幅度最高可达4.1 ℃;径流温度升高往往出现在径流过程初期,温度达峰平均时间为38 min;径流是否升温与降雨强度峰值位置之间没有明显关系;气温、不透水地表初始时刻温度、降雨历时及降水量是雨水径流温度的极显著影响因素(P<0.01);降雨期间气温、降雨历时、不透水地表初始时刻温度和管道内壁温度4个指标,可以基本解释研究区域96.7%的径流温度输出情况。

  相似文献   

18.
京津冀地区冬季雾霾过程频发,然而确定雾的空间分布一直是难点.本研究利用高分静止卫星Himawari-8的可见光和红外通道资料,分析2021年11月3-5日一次典型的京津冀地区雾的分布和演变过程.结果表明:(1)通过11.2μm与3.9μm通道的亮温差值(-8~-3 K)反演夜间雾的区域分布以及对应的雾顶高度,效果较好.(2)11月3-5日每天发生的雾,其类型、区域分布和演变过程都呈现不同的特征,3日清晨的雾为平流雾,覆盖范围为3 d中最大,几乎涵盖京津冀地区的平原地带;受西南水汽输送影响,北京市以南地区的雾发展较充分、持续时间最长,其中天津市北部的雾甚至在整个白天仍能维持.(3)11月4日和5日清晨均出现呈三角形区域分布的辐射雾,雾区的北缘和西缘分别因太行山和燕山山脉的阻挡形成,雾区南缘受低层风场作用位于天津市-石家庄市一线,呈平直的东北-西南走向,与非雾区界限分明;区域性静稳条件下,城市热岛效应对雾的分布和演变有重要影响.研究显示,京津冀地区冬季雾的分布和演变会受到水汽平流、低层风场、地形、热岛效应等多方面影响.  相似文献   

19.
2015年3月17日18:00~23:00北京地区的PM_(2.5)质量浓度快速下降,在此期间并未出现与冷空气活动相伴的强偏北风.本研究分析了导致空气质量迅速改善的原因,结果表明边界层急流起着关键的作用.随着边界层内偏南风速增大,大气的通风量增大,污染物浓度降低.急流发展也加大了边界层内水平风的垂直切变,从而导致湍流增强和混合层增厚.此外,3月17日20:00在混合层顶附近出现气旋性地转涡度,Ekman抽吸的方向为垂直向上,于是底层的污染物就被带到高空并随强劲的西南风输送到下游.边界层急流的发展与惯性振荡和大气的斜压性有关.  相似文献   

20.
北京冬季PM2.5中金属元素浓度特征和来源分析   总被引:4,自引:2,他引:4  
为了解北京冬季细颗粒物中金属元素的浓度水平及其来源,于2014年12月至2015年1月使用中流量PM_(2.5)采样器在北京城区开展了为期30 d的连续采样,采用滤膜称重法检测PM_(2.5)浓度,电感耦合等离子体质谱法(ICP-MS)分析PM_(2.5)中16种元素总量,并采用富集因子法和因子分析法分析元素污染特征及其来源.结果表明,观测期间PM_(2.5)中主要金属元素为K、Ca、Fe、Al和Mg,占16种元素总量的90.7%.与白天相比,地壳元素如Mg和Al等在夜间的浓度下降30%以上,而人为源金属元素如Cu和Pb等的浓度则上升40%以上.从优良天到重污染天气,上述16种金属元素的总浓度上升1倍,但其在PM_(2.5)中的比例却逐渐降低,说明金属元素的富集不是PM_(2.5)上升的主要原因.随着污染程度的加剧,Cu、Zn、As、Se、Ag和Cd等主要来自人为源的金属元素浓度上升较快,重度污染天与优良天的浓度比值范围为2.9~5.3;而Al、Mg、Ca、Mn和Fe等地壳元素浓度上升则较缓,重度污染天与优良天的浓度比值范围为1.2~1.8.北京冬季PM_(2.5)中金属元素主要来源于燃煤和生物质燃烧、交通和工业排放以及地面扬尘,贡献率分别为34.2%、25.5%和17.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号