首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Pupae of several insect species are known to generate air-borne sounds and/or substrate-borne vibrations, but the functions of the sounds/vibrations are not well understood. Here, we present the first evidence of vibratory communication between pupae and larvae of a group-living Japanese rhinoceros beetle Trypoxylus dichotoma which inhabits humus soil. The last-instar larvae of this beetle construct their own pupal cells to ensure normal pupation and eclosion. These cells are fragile and subject to damage from burrowing larvae because pupae and larvae co-inhabit the same patches of humus. In laboratory experiments, we demonstrated that pupal cells harboring live pupae were less likely to be broken by larvae than those harboring dead pupae. It was also demonstrated that pupae produced vibrations in response to larvae approaching the pupal cells. High-speed video and vibration analyses showed that pupae emitted 3–7 pulses at 1.3-s intervals by beating their pronotum against the inner wall of the pupal cell. The pupal vibration was of low frequency with a maximum energy at ≈ 100 Hz. The drumming behavior was more frequently observed in the presence of an approaching larva than in its absence. When pupal vibrations were played back near to vacant artificial pupal cells, these cells were rarely disturbed by the larvae. These results provide evidence that pupae generate vibrations to deter conspecific larvae, thereby preventing damage to the cells. This larval response to pupal vibrations may have evolved through preexisting anti-predator and/or sib-killing-avoidance behavior.  相似文献   

2.
Cohort size and food availability to larval detritivores are linked to pupal mass, and hence to adult fitness, by the pupation window model. Previous tests of this model have employed artificial food. This paper derives a version of the model that incorporates the dynamics of natural detritus. Tests of the model using cohorts of Aedes triseriatus Say led to successful predictions of numbers of pupae, female pupal mass, and female development time. However, it is recommended that model parameters be estimated separately for different types of leaf litter.  相似文献   

3.
Summary. Many studies investigating effects of plant chemicals on herbivore performance have reported contradictory results, perhaps because of possible interaction between different chemicals. Also, a herbivore’s performance is not necessarily consistent with its food or oviposition preference. Our aim was to investigate simultaneously antibiosis (larval growth and survival) and antixenosis (oviposition and feeding preferences) responses in herbivore to three plant chemicals, of which one is expected to have positive and two are expected to have negative effects. Antibiosis was measured by correlating the nitrogen and glycoalkaloid levels in host plants to the survival and adult size of Leptinotarsa decemlineata, by rearing larvae on whole plants of three potato varieties. Although host plants differed in their glycoalkaloid levels, survival rate and adult body size did not differ among beetles reared on different potato varieties. This suggests that beetles are quite robust for differences in both foliar α-chaconine and foliar α-solanine content. However, differences in antixenosis were found although they could not be directly predicted from the leaf chemistry. Females preferred to lay their eggs on the variety with high α-solanine content (Nevsky) towards which males showed a tendency to feeding preference. Overall, our results confirm that beetles are well adapted to the chemical defences of potato plants as potato varieties did not significantly affect beetle performance, but differences in oviposition preference may still result in major differences in the amount of damage inflicted on plants in the fields.  相似文献   

4.
Summary. Pyrrolizidine alkaloids (PAs) present a model system in the investigation of tritrophic interactions mediated by plant secondary compounds. However, their toxicity for insect herbivores has never been experimentally proven. Here, we demonstrate the toxic effects of a PA on growth and survival of the eri silk moth Philosamia ricini. In a feeding experiment, larvae of this generalist herbivore fed with an artificial PA diet gained weight significantly slower than control animals, and died as pupae. We suggest that derivatives of the ingested PA N-oxide damage developmental functions during metamorphosis. A tracer test with [14C]senecionine N-oxide revealed that the caterpillars lack adaptations that would prevent conversion of the chemical into the pro-toxic free base. In contrast, the PA adapted leaf beetle Longitarsus anchusae accumulates PAs as N-oxides. We tested the purpose of sequestration in this species as defence against predators. Through a series of prey choice experiments with three carabid predator species, chemically non-protected bark beetle pupae were chosen almost uniformly over L. anchusae pupae. In a following choice test with one of these predators, artificially PA-treated mealworm segments deterred the predator from feeding. Overall the study corroborates the immediate toxic effect of PAs on non-adapted herbivores and the protective effect that adapted insects may gain by sequestering them. It thereby underlines the potential for PAs to play a central role in multitrophic interactions between plants, phytophages and their predators.  相似文献   

5.
Toxicity of an organochloride insecticide, hexachlorocyclohexane (HCH) on the alterations in the growth and silk qualities of silkworm, Bombyx mori L were investigated. HCH yielded higher growth constants (K), indicating impairment of growth of silkworms and silk gland. the decrement in fibroin content is significant. HCH treatment also resulted in considerable reduction in the cocoon, pupal and shell weights, survival and emergence of pupae and number of eggs laid and deterioration in quality and quantity of silk thread.  相似文献   

6.
The choice of neonatal hiding place is critical for ungulates adopting hiding anti-predator strategies, but the consequences of different decisions have rarely been evaluated with respect to offspring survival. First, we investigated how landscape-scale choices made by roe deer fawns and their mothers affected predation risk by red foxes in a forest–farmland mosaic in southeastern Norway. After, we examined the effect of site-specific characteristics and behaviour (i.e. visibility, mother–fawn distance and abundance of the predator’s main prey item—small rodents) on predation risk. The study of habitat use, selection and habitat-specific mortality revealed that roe deer utilised the landscape matrix in a functional way, with different habitats used for feeding, providing maternal care and as refugia from predation. Mothers faced a trade-off between foraging and offspring survival. At the landscape-scale decisions were primarily determined by maternal energetic constraints and only secondarily by risk avoidance. Indeed, forage-rich habitats were strongly selected notwithstanding the exceptionally high densities of rodents which increased fawn predation. At fine spatial scales, a high visibility of the mother was the major factor determining predation risk; however, mothers adjusted their behaviour to the level of risk at the bed site to minimise predation. Fawns selected both landscape-scale refugia and concealed bed sites, but failure to segregate from the main prey of red foxes led to higher predation. This study provides evidence for the occurrence of spatial heterogeneity in predation risk and shows that energetically stressed individuals can tackle the foraging-safety trade-off by adopting scale-dependent anti-predator responses.  相似文献   

7.
Mixtures can be divided into simple (chemicals with comparable properties—health risk assessments on the chemicals) and complex, which can be further subdivided into defined (a reasonably distinct composition, created at a specific time and place despite dissimilar components—risk assessments on the common source) and coincidental (chemicals without similar properties or constant composition in time or space—risk assessments on the receptor). Interactions recognized are: independent action, dose addition (additivity), and potentiation (synergy and antagonism). Unpredicted outcomes need recognition. New approaches in higher education and multidisciplinary investigations are essential. The community of the Society for Environmental Geochemistry and Health should help clarify points such as when transformations in mixtures may become important enough to alter the classification and the risk assessment. The multidisciplinary community is also well placed to support the integration of nonchemical influences into mixture analysis and to contribute to the investigation of cumulative and multiple exposures.  相似文献   

8.
Predicting spread is a central goal of invasion ecology. Within marine systems, researchers have increasingly made use of oceanographic circulation models to estimate currents and track species dispersal. However, the accuracy of these models for predicting biological patterns, particularly for non-native species, has generally not been validated. Particularly, we wished to examine the ability of models to predict physical and biological processes, which jointly determine the spread of marine larval organisms. We conducted two empirical studies—a recruitment study and a drift card study—along the coast of New England, USA, focusing on two invaders of concern—the European green crab (Carcinus maenas) and the Asian shore crab (Hemigrapsus sanguineus), to explicitly evaluate the ability of oceanographic models to predict patterns of spread. We used data from the large-scale drift card study to validate our ability to capture dispersal patterns driven purely by physical processes. Next, we conducted a recruitment study to evaluate our ability to reproduce patterns of biological dispersal. We were generally capable of reproducing drift cards patterns—suggesting that the physical mechanics in the model were predictive. However, predicted biological patterns were inconsistent—we were able to predict dispersal patterns for H. sanguineus but not for C. maenas. Our results highlight the importance of validating models and suggest that more work is necessary before we can reliably use oceanographic models to predict biological spread of intertidal organisms.  相似文献   

9.
Virtually all animal conflicts occur over access to mates or resources that affect survival, the two key components of fitness. In this paper, we report that predation risk and mate defense jointly affect the outcomes of contests between male sand crabs (Scopimera globosa) for burrows in which crabs mate and take shelter from predators. We observed the contests under three different conditions: (1) the natural condition of low predation risk and without the presence of a female; (2) the first experiment in which we imposed upon only intruding males the perception of predation risk—by digging them from their burrows, capturing and handling them, and placing them into other males’ burrows—to increase the value of the burrows for the intruders as shelter, and (3) the second experiment in which we repeated this treatment but increased the resource value of the burrow to the resident by placing a female in his burrow. The difference in body size between contestants was the main determinant of victory in all analyses. However, perceived predation risk also partly affected the outcomes of the fights: The motivated intruders were likely to win even when they were a little smaller than the residents. In addition, defense of a female had a significant effect on the outcomes of fights: The motivated residents won more fights than the motivated intruders, indicating that these two treatments caused asymmetric increases of the resource value. This is the first report of two external factors simultaneously raising resource value, affecting motivation of contestants, and altering the outcome of fights.  相似文献   

10.
Populations of wild Brassica oleracea L. grow naturally along the Atlantic coastlines of the United Kingdom and France. Over a very small spatial scale (i.e., <15 km) these populations differ in the expression of the defensive compounds, glucosinolates (GS). Thus far, very few studies have examined interactions between genetically distinct populations of a wild plant species and associated consumers in a multitrophic framework. Here, we compared the development of a specialist (Pieris rapae) and a generalist (Mamestra brassicae) insect herbivore and their endoparasitoids (Cotesia rubecula and Microplitis mediator, respectively) on three wild populations and one cultivar of B. oleracea under controlled greenhouse conditions. Herbivore performance was differentially affected by the plant population on which they were reared. Plant population influenced only development time and pupal mass in P. rapae, whereas plant population also had a dramatic effect on survival of M. brassicae. Prolonged development time in P. rapae corresponded with high levels of the indole GS, neoglucobrassicin, whereas reduced survival in M. brassicae coincided with high levels of the aliphatic GS, gluconapin and sinigrin. The difference between the two species can be explained by the fact that the specialist P. rapae is adapted to feed on plants containing GS and has evolved an effective detoxification system against aliphatic GS. The different B. oleracea populations also affected development of the endoparasitoids. Differences in food-plant quality for the hosts were reflected in adult size in C. rubecula and survival in M. mediator, and further showed that parasitoid performance is also affected by herbivore diet.  相似文献   

11.
Over the past few decades, socioecological models have been developed to explain the relationships between the ecological conditions, social systems, and reproductive success of primates. Feeding competition, predation pressures, and risk of infanticide are predicted to influence how female reproductive success (FRS) depends upon their dominance rank, group size, and mate choices. This paper examines how those factors affected the reproductive success of female mountain gorillas (Gorilla beringei beringei) of the Virunga Volcanoes, Rwanda from 1967–2004. Reproductive success was measured through analyses of interbirth intervals, infant survival, and surviving infant birth rates using data from 214 infants born to 67 females. Mountain gorillas were predicted to have “within-group scramble” feeding competition, but we found no evidence of lower FRS in larger groups, even as those groups became two to five times larger than the population average. The gorillas are considered to have negligible “within-group contest” competition, yet higher ranked mothers had shorter interbirth intervals. Infant survival was higher in multimale groups, which was expected because infanticide occurs when the male dies in a one-male group. The combination of those results led to higher surviving birth rates for higher ranking females in multimale groups. Overall, however, the socioecological factors accounted for a relatively small portion of the variance in FRS, as expected for a species that feeds on abundant, evenly distributed foliage.  相似文献   

12.
A simple, two-stage, physiologically based extraction has been applied to assess the human bioaccessibility of potentially toxic elements (PTE) in 20 urban soils from a major UK city. Chromium and iron bioaccessibilities were found to be markedly higher in the intestinal phase, whilst lead and zinc bioaccessibilities were higher in the stomach. Copper and manganese bioaccessibilities were generally similar under both extraction conditions. Principal component analysis was used to study relationships amongst bioaccessible element concentrations and land use. Distinctions could be observed between the distributions of the urban metals—copper, lead and zinc—and metals predominantly of geogenic origin, such as iron. There was no clear delineation between roadside soils and soils obtained from public parks. Bioaccessible analyte concentrations were found to be correlated with pseudototal (aqua regia soluble) analyte concentrations for all elements except iron. Results of the BCR sequential extraction did not, in general, provide a good indication of human bioaccessibility. Comparison of bioaccessible PTE concentrations with toxicological data indicated that lead is the element of greatest concern in these soils but that levels are unlikely to pose a health risk to children with average soil intake.  相似文献   

13.
Understanding which factors affect the feeding preferences of herbivores is essential for predicting the effects of herbivores on plant assemblages and the evolution of plant–herbivore interactions. Most studies of marine herbivory have focussed on the plant traits that determine preferences (especially secondary metabolites), while few studies have considered how preferences may vary among individual herbivores due to genetic or environmental sources of variation. Such intraspecific variation is essential for evolutionary change in preference behaviour and may alter the outcome of plant–herbivore interactions. In an abundant marine herbivore, we determined the relative importance of among-individual and environmental effects on preferences for three host algae of varying quality. Repeated preference assays were conducted with the amphipod Peramphithoe parmerong and three of its brown algal hosts: Sargassum linearifolium, S. vestitum and Padina crassa. We found no evidence that preference varied among individuals, thus constraining the ability of natural selection to promote increased specialisation on high-quality S. linearifolium. Most of the variation in preference occurred within individuals, with amphipod preferences strongly influenced by past diet. The increased tendency for amphipods to select alternate hosts to that on which they had been recently feeding indicates that amphipods are actively seeking mixed diets. Such a feeding strategy provides an explanation for the persistence of this herbivore on hosts in the field that support poor growth and survival if consumed alone. The effects of past diet indicate that herbivore preferences are a function of herbivore history in addition to plant traits and are likely to vary with the availability of algae in space and time.  相似文献   

14.
Juvenile lesser blue crabs, Callinectes similis Williams, were exposed to a range of salinities for measurement of survival and bioenergetics. Effects of salinity on survival were determined by exposing juvenile crabs to salinity treatments ranging from 0 to 74‰. All crabs survived 21 d of exposure to 5 and 45‰S. The 21 d LC50 values for salinity tolerance (calculated from survival data) were 2.6 and 60.8‰S at low and high salinities, respectively. Energy-budget components and scope for growth were determined for crabs exposed to 2.5, 10, 25, 35 and 50‰S. Energetic absorption rates were highest at 2.5 and 35‰S. Energetic expenditure rates (energy lost to respiration and excretion) were greatest at 2.5‰S, and decreased as salinity increased. Respiration constituted the majority of energetic expenditure at all salinities (92.3% average). Scope for growth was significantly affected by salinity and was highest in crabs exposed to 35‰S. Increased respiration at low salinity may indicate that C. similis incurs greater costs due to osmoregulation. The results of this study indicate that C. similis is capable of surviving and growing in waters with salinities as low as 10‰. Received: 10 January 1997 / Accepted: 11 February 1997  相似文献   

15.
The entire northwestern coast of Portugal is undergoing severe erosion and there are several areas at high risk of erosion. Commonly considered as a problem—because it jeopardizes human development along the coast—erosion is indeed a natural process of sediment redistribution. This paper presents a brief analysis of erosion driving forces and the subsequent state of vulnerability that coastal segments between the mouth of the River Douro and Cape Mondego are facing. The paper also discusses erosion risk levels, low or high, and the subsequent questions whether there are populations, economical assets or natural habitats at risk and/or areas prone to coastal flooding. Main challenges and future trends along the study area are identified in the light of understanding the underlying causes of conflicts and what realistically can be achieved given the morphodynamics and hydrodynamic processes, human development established along this coastal segment and the existing policies.  相似文献   

16.
The importance of mechanical wear in the behavioral ecology and energetics of small organisms is an open question. We investigated wear in leaf-cutter ants, Atta cephalotes, because their cutting technique can be imitated and the leaves are the main energy source for the colony. We found that a razor-sharp (50-nm radius) “V-blade” that cuts leaves between the first and second mandibular teeth was dulled (∼10-μm radius) and often nearly worn away on foragers. We found that the force required to cut standard leaves, using mandibles removed from foragers cutting in the wild, varied by a factor of 2.5 with tooth wear, defined as the difference between pupal and actual tooth length. We also found that wear significantly reduced the cutting rate. From the distribution of wear among the cutting foragers, we estimated that the wild colony would have spent 44% less of both energy and time making the observed cuts if the cutters’ mandibles had all been pristine. Finally, wear correlated with behavioral differences—foragers with the most worn 10% of mandibles almost exclusively carried rather than cut. This previously unreported form of task partitioning suggests that eusociality may extend useful lifespans by making it possible to switch tasks as skills decline. We developed a model, assuming that ants do work at a constant rate proportional to their mass, to predict the cutting rate from head width, tooth wear, and force to cut leaves with a scalpel (R = 0.62), and we used this estimate to argue that the partitioning of cutting and carrying was sub-optimal but better than random. Wear’s strong effect on performance may promote wear-avoiding behavior and wear-resistant mandible composition; it may affect leaf selection and worker lifespan and it raises the possibility that wear is a similarly important constraint for many other small organisms.  相似文献   

17.
The fate, bioavailability and environmental impacts of metals discharged in municipal and mining wastewater discharge will depend to a large extent on chemical speciation and distribution. Previous studies on metal bioaccumulation have shown that total metal concentrations are not a good predictor of bioavailability in the dispersion plumes of municipal effluents. The objective of this study was to determine the solid phase speciation of metals in surface waters receiving urban and mining effluents in order to assess their fate and relative mobility in the receiving environment. Suspended particulate matter was sampled using sediment traps at several sites downstream of effluent outfall plumes as well as at reference upstream sites. Particulate metal in operationally defined fractions—exchangeable/carbonates, reducible, oxidisable and residual—were determined in suspended particulate matter with a series of selective chemical extractions. Metal enrichment in suspended particles was generally observed in both mining and urban effluent discharges. When compared to its receiving environment, the mining effluent appeared to release more particulate metals (Cu, Fe, Zn) in the most reactive fractions (i.e. exchangeable/carbonates + reducible forms, 23–43%), while other released metals, such as Cd and Mn, were predominantly in the least reactive forms (i.e., oxidisable + residual, 73–97%). In contrast, the reactivity of all particulate metals, with the exception of Mn, from the urban effluent was much higher, with up to 65, 42, 30 and 43% for Cd, Cu, Fe and Zn, respectively, in the two most reactive fractions. As expected in effluent dispersion plumes, parameters such as the organic carbon, Fe oxide and carbonate contents have specific effects on the partitioning of several trace metals, particularly Cd, Cu and Zn. Our results indicated that the relative distributions of metals among geochemical fractions varied in the effluent receiving waters where organic carbon and Fe oxides appeared as the most important parameters. This could therefore decrease the exposure for aquatic organisms that are exposed to those contaminated sediments as well as the risk to human health.  相似文献   

18.
Theory states that an optimal forager should exploit a patch so long as its harvest rate of resources from the patch exceeds its energetic, predation, and missed opportunity costs for foraging. However, for many foragers, predation is not the only source of danger they face while foraging. Foragers also face the risk of injuring themselves. To test whether risk of injury gives rise to a foraging cost, we offered red foxes pairs of depletable resource patches in which they experienced diminishing returns. The resource patches were identical in all respects, save for the risk of injury. In response, the foxes exploited the safe patches more intensively. They foraged for a longer time and also removed more food (i.e., had lower giving up densities) in the safe patches compared to the risky patches. Although they never sustained injury, video footage revealed that the foxes used greater care while foraging from the risky patches and removed food at a slower rate. Furthermore, an increase in their hunger state led foxes to allocate more time to foraging from the risky patches, thereby exposing themselves to higher risks. Our results suggest that foxes treat risk of injury as a foraging cost and use time allocation and daring—the willingness to risk injury—as tools for managing their risk of injury while foraging. This is the first study, to our knowledge, which explicitly tests and shows that risk of injury is indeed a foraging cost. While nearly all foragers may face an injury cost of foraging, we suggest that this cost will be largest and most important for predators.  相似文献   

19.
Seasonal variation in coral reef macroalgal size and condition is well documented, yet seasonal variability of herbivory on macroalgae by coral reef fishes is unknown. Herbivore feeding intensity was quantified monthly on an inner-shelf reef on the Great Barrier Reef, using Sargassum bioassays. Removal rates of transplants displayed high levels of variation with significantly higher rates of removal during the summer months. Differences in Sargassum plant size and condition suggest that the variability in herbivore feeding intensity is attributed primarily to the variation in the condition of the macroalgae, especially epiphyte loads. The dramatic changes in macroalgal removal reveal a considerable decrease in herbivore activity in the winter. This highlights the clear distinction between ‘summer’ and ‘winter’ months in terms of reef processes, emphasizing the high seasonal variation in macroalgal removal rates at different time of the year.  相似文献   

20.
Insects with two or more generations per year will generally experience different selection regimes depending on the season, and accordingly show seasonal polyphenisms. In butterflies, seasonal polyphenism has been shown with respect to morphology, life history characteristics and behaviour. In temperate bivoltine species, the directly developing generation is more time-constrained than the diapause generation, and this may affect various life history traits such as mating propensity (time from eclosion to mating). Here, we test whether mating propensity differs between generations in Pieris napi, along with several physiological parameters, i.e. male sex pheromone synthesis, and female ovigeny index and fecundity. As predicted, individuals of the directly developing generation—who have shorter time for pupal development—are more immature at eclosion; males take longer to synthesise the male sex pheromone after eclosion and take longer to mate than diapause generation males. Females show the same physiological pattern; the directly developing females lay fewer eggs than diapausing females during the first days of their life. Nevertheless, the directly developing females mate faster after eclosion than diapausing females, indicating substantial adult time stress in this generation and possibly an adaptive value of shortening the pre-reproductive period. Our study highlights how time stress can be predictably different between generations, affecting both life history and behaviour. By analysing several life history traits simultaneously, we adopt a multi-trait approach to examining how adaptations and developmental constraints likely interplay to shape these seasonal polyphenisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号