首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
好氧颗粒污泥对酸性红B的生物吸附模型研究   总被引:1,自引:0,他引:1  
考察了灭活好氧颗粒污泥吸附酸性红B的吸附等温线、吸附动力学和热力学.结果表明,Langmuir和Redlich-Peterson比Freudlich吸附等温线更符合试验数据,20 ℃时Langmuir最大单分子层吸附量为123.46 mg/g.吸附动力学符合准2级动力学模型.灭活AGS内部扩散过程用Webber-Morris模型拟合,结果表明颗粒内部扩散过程是限速步骤,但边界层扩散和动力学阻力亦不能忽略.热力学分析表明,吸附过程是吸热且自发的过程.  相似文献   

2.
采用改进的滴加成球法合成壳聚糖树脂,用环氧氯丙烷对树脂进行交联,制备新型壳聚糖交联树脂。研究了交联树脂对Cr(VI)的吸附效果,探讨了溶液pH值、吸附时间、温度、Cr(VI)初始质量浓度等因素对吸附性能的影响及吸附热力学和动力学。结果表明,各因素中pH值对壳聚糖交联树脂吸附Cr(VI)影响较大。对初始质量浓度为120mg/L的Cr(VI)溶液,壳聚糖交联树脂投加量为1 g/L,pH=3,温度为25℃,吸附2h时可达到最大吸附容量(72mg/g)。用Langmuir等温模型和Pseudo second-order动力学模型对树脂的吸附过程进行线性拟合,R2分别为0.999 9和0.999 7,模型计算的饱和吸附容量qmax(73.53 mg/g)和平衡吸附量qe(29.23 mg/g)与试验结果(72.10 mg/g和27.73 mg/g)基本吻合。Fick扩散模型表明,树脂对Cr(VI)的吸附可分为3个阶段,说明Cr(VI)的去除是物理吸附和化学吸附共同作用的结果。  相似文献   

3.
为了研究用于印染废水处理的新型高效材料,以3-胺丙基三甲氧基硅烷为偶联剂制备了氨基修饰表面的磁性纳米粒子吸附剂(记为Fe3O4@SiO2-NH2).研究了吸附时间、pH值、染料初始质量浓度和吸附剂用量等因素对其吸附酸性橙Ⅱ(AO Ⅱ)和活性艳红X-3B(X-3B)的吸附效率的影响,测定和分析了吸附过程的热力学和动力学.结果表明,Fe3O4@SiO2-NH2对AO Ⅱ和X-3B的吸附符合Langmuir吸附等温线和准二级动力学模型.Fe3O4@SiO2-NH2对AO Ⅱ和X-3B的吸附是单分子层吸附为主的化学过程,其吸附容量分别为132 mg/g和233 mg/g.初步研究了通过外加磁场和调节pH值来实现吸附剂和染料的再生和循环使用.  相似文献   

4.
将海藻酸钠与纳米α-Fe2O3制成微球,用于吸附U(Ⅵ)。探讨了纳米α-Fe2O3含量、交联时间、pH值、投加量、浓度、温度等对吸附的影响。结果表明,pH值对U(Ⅵ)的吸附过程影响显著,适宜pH值为3。U(Ⅵ)在微球上的吸附量随着吸附时间的增加而增大,初始阶段(1.5 h)反应进行得很快,9 h时达到吸附平衡。当U(Ⅵ)初始质量浓度为10mg/L时,其饱和吸附量为2.64mg/g。准二级动力方程很好地拟合了吸附动力学数据,且R2>0.99。吸附率与温度呈正相关,Lang-muir与Freundlich吸附等温方程均能较好地拟合固定化微球对U(Ⅵ)的吸附过程(R2>0.99),但Freundlich等温线效果更好。吸附反应中ΔG<0,ΔH>0且小于40 kJ/mol,ΔS>0,这表明吸附过程能自发进行,为吸热反应。  相似文献   

5.
利用共沉淀法制备了表面活性剂PVP-K30以及PEG-4000改性纳米Fe3O4吸附剂,采用X射线衍射仪(XRD)、透射电子显微镜(TEM)、震动样品磁强计(VSM)表征了改性Fe3O4的形貌、尺寸以及磁性质;以盐酸四环素(TC)为吸附对象,研究了改性剂、反应温度和TC起始质量浓度等对Fe3O4吸附性能的影响,同时利用红外光谱仪(IR)研究吸附机理。结果表明,改性后纳米Fe3O4结晶度及分散性明显提高,较25 nm的未改性Fe3O4,PVP和PEG-4000改性Fe3O4颗粒分别减小至20 nm和10 nm;同时改性产物均保持了较高磁性性能。在吸附盐酸四环素(TC)过程中,PEG-4000改性Fe3O4吸附容量最高(47.62mg/kg),PVP改性Fe3O4的吸附能力(36.1 mg/kg)优于未改性Fe3O4(13.45 mg/kg)。PEG-4000改性Fe3O4吸附TC过程中,Langmuir等温线模型优于Freundlich等温线模型,表明吸附剂对四环素分子为单层分子吸附,其吸附动力学遵循孔内扩散模型,并以表面吸附为主,粒内扩散为辅;改性Fe3O4吸附TC行为中羟基间形成的氢键起主要吸附作用。改性Fe3O4吸附剂经3次解吸仍显示出较高的吸附容量。  相似文献   

6.
污泥热解残渣对废水中Cr(VI)去除作用的研究   总被引:1,自引:0,他引:1  
为探索污泥热解残渣的资源化利用途径,研究污泥热解残渣直接用作吸附剂去除废水中Cr(VI)的可行性,分析热解温度、时间以及吸附时间、溶液pH值和吸附剂用量等因素对污泥残渣吸附性能的影响.结果表明,在700 ℃下热解1.0 h的污泥残渣的吸附性能最佳,吸附过程可以用准二级反应动力学方程描述;污泥残渣对Cr(VI)的吸附受多种过程(如化学吸附、颗粒内扩散等)反应速度的影响;Langmuir模型和Freundlich模型均能很好地对试验数据进行拟合,相对而言,吸附行为更符合Langmuir模型;当吸附时间为24.0 h,初始溶液pH=4.0,吸附剂质量浓度为20 g/L时,污泥残渣对Cr(VI)的最大吸附质量比qmax为13.87 mg/g.研究表明,将污泥热解残渣作为廉价吸附剂处理含Cr(VI)废水有一定的应用前景.  相似文献   

7.
取MBR膜生物反应器的活性污泥,探讨该活性污泥对菲的吸附性能和吸附模型。考察了污泥质量浓度、温度等对污泥吸附性能的影响,并分别用Langmuir和Freundlich吸附模型进行了拟合。结果表明,随污泥质量浓度增加,对菲的去除率增大,而污泥的吸附量下降;污泥质量浓度为100 mg/L时污泥的平衡吸附量为2.51 mg/g,约为500 mg/L时的3倍。温度为35℃时,污泥对菲的吸附去除率可以达到60.3%。相比于Langmuir吸附等温线模式,活性污泥对菲的吸附过程更符合Freundlich吸附等温线模式;且其吸附过程符合二级动力学方程,吸附速率常数ka2为0.091 4 g/(mg·min)。该吸附过程活化能为6.63 kJ/mol;ΔG0,ΔH=21.30 kJ/mol,表明该过程为自发吸热反应。  相似文献   

8.
采用青霉菌菌体作为吸附剂对染料活性艳红X-3B进行吸附研究,考察了染料的初始质量浓度、pH值和温度对菌体吸附能力的影响,并探讨了吸附动力学和热力学特性.结果表明,经硝酸处理后的菌体吸附能力明显增强,在pH值为3时,吸附量达到最大. 吸附过程可用准二级动力学方程来表达,平衡时吸附量的计算值和实验值吻合很好,相关系数可达0.999 8. 硝酸处理的菌体对活性艳红的吸附等温线可用Langmuir方程表达.当温度为25 ℃、30 ℃、35 ℃、40 ℃时,饱和吸附量分别为250.0 mg/g、322.6 mg/g、400 mg/g、416.7 mg/g.温度升高,吸附量增大,表明该吸附反应是吸热反应.根据热力学函数关系计算出ΔH=35.13 kJ/mol,ΔS=125.17 J/(mol·K),ΔG为-2.13~-4.03 kJ/mol,表明菌体对活性艳红的吸附是自发过程.  相似文献   

9.
分别采用热提法与蒸汽法对好氧污泥胞外聚合物(Extracellular Polymeric Substances,EPS)进行了提取,对两种方法提取效果进行比较,并探讨了EPS投加量、吸附时间、温度、pH值等对吸附的影响。结果表明:采用热提法提取的EPS中蛋白质、多糖与核酸质量浓度分别为2.111 g/L、0.235 3 g/L、0.111 0 mg/L,蛋白质与多糖质量浓度比值为8.971;而采用蒸汽法提取的EPS中蛋白质、多糖与核酸质量浓度分别为2.828 g/L、0.744 4 g/L、0.247 9 mg/L,蛋白质与多糖质量浓度比值为3.800。pH值对染色剂玫瑰红B的吸附过程影响显著,适宜pH=6。随温度增加,吸附量增大,在50℃时达到最大。染色剂玫瑰红B在EPS上的吸附量随吸附时间增加而增大,初始进行得很快,在720min时达到吸附平衡。当EPS初始质量浓度为800 mg/L时,其饱和吸附量为12.61 mg/g。准二级动力方程很好地拟合了各温度的吸附动力学数据且R20.987。分别采用Langmuir与Freundlich等温吸附模型进行热力学拟合,Langmuir等温模型在各温度下的模拟方程决定系数均在0.7以下;而Freundlich等温模型各温度的模拟方程决定系数在0.81~0.98,相关性明显好于Langmuir吸附等温模型,因此吸附较符合Freundlich等温模型。  相似文献   

10.
以改性蔗渣焚烧灰为吸附材料,通过吸附实验研究其吸附去除硫酸盐的吸附机理。利用伪一级和伪二级动力学模型以及内扩散模型,对吸附动力学实验结果进行分析。结果表明,改性蔗渣焚烧灰吸附去除硫酸盐较符合伪二级动力学特征,整个吸附反应的吸附速率主要由颗粒内扩散决定;用Langmuir和Freundlich等温模型分析实验数据发现,Langmuir模型更好地描述改性蔗渣焚烧灰对硫酸盐的吸附过程;用Van’t Hoff方程式计算吸附过程热力学参数ΔH和ΔS均为正值,ΔG为负值,说明该吸附反应是自发的、吸热的,且是反应过程中体系混乱度增加的反应。  相似文献   

11.
本研究用NaOH预处理后的香菇废弃物作为吸附材料,处理含铜、锌的重金属废水。研究了吸附时间、pH值、初始金属离子质量浓度、香菇废弃物质量浓度等因素对预处理后香菇废弃物吸附铜、锌离子的影响。结果表明:预处理后香菇废弃物对铜和锌的吸附平衡时间均为10 min;对铜和锌吸附的最佳pH值范围分别为5~7和5~6,其中对锌的吸附率在pH=2~4的范围内也能保持在87%左右。当香菇废弃物质量浓度大于4 g/L,铜/锌的吸附率均不再增大;吸附动力学实验表明,伪二级动力学模型能够很好地拟合预处理后香菇废弃物对铜和锌的动力学吸附过程,相关系数R2均为0.999 9;热力学分析表明,香菇废弃物对铜和锌的吸附热力学过程用Langmuir和Freundlich等温吸附模型均能较好地描述。Langmuir模型拟合结果显示,预处理后香菇废弃物对铜和锌的理论最大吸附量分别为8.993 mg/g和20.16 mg/g。  相似文献   

12.
为提高细菌纤维素(BC)处理含重金属离子废水的效果,以BC和纳米Fe3O4为原料,采用共混沉淀法制备了新型的BC负载纳米Fe3O4吸附剂(NFBC).同时将制得的NFBC用于吸附重金属离子Cd2+研究,考察了溶液pH值、吸附时间等因素对吸附效果的影响,并进一步模拟吸附动力学和吸附等温线,初步分析了吸附机理.结果表明:利用纳米Fe3O4比表面积大和表面原子配位不足的特点,将其负载于BC表面,提高了对Cd2+吸附,去除率可达70%,单位吸附量最大为27.97 mg/g; pH值是影响NFBC对Cd2+吸附效果的重要参数;吸附动力学符合二级反应动力学,吸附平衡符合Langmuir吸附等温方程,并具有良好的线性,说明NFBC对Cd2+是典型的单分子层吸附;在外加磁场作用下,纳米Fe3O4粒子超顺磁性有助于吸附剂能快速有效地从液相分离,克服了BC粉末难于有效分离的不足.  相似文献   

13.
通过浸渍-焙烧的方法制得铁改性活性炭,并将之应用于废水中甲醛的吸附.分别考察了吸附时间、初始溶液质量浓度、吸附剂投加量对改性活性炭吸附甲醛效果的影响,并研究了铁改性活性炭对甲醛水溶液的等温吸附及动力学.结果表明:在25℃、活性炭投加量为10 g/L、吸附时间为360 min时,铁改性活性炭对甲醛的去除率为91.8%;用准一级、准二级及内扩散动力学模型拟合吸附过程,准二级动力学模型符合该吸附过程;用Langmuir和Freundlich模型描述等温吸附过程,该吸附过程服从Langmuir模型,饱和吸附量为3.396 7mg/g.  相似文献   

14.
为了研究用于含汞离子废水处理的新型高效材料,研究了纳米γ-Fe2O3对汞离子的吸附行为。探讨pH值(3、8和12)、温度(288 K、298 K、308 K、318 K)和离子强度(Ca2+,0.001 mol/L、0.01 mol/L、0.1 mol/L)对该吸附的影响。使用吸附动力学方程(拉格朗日准一级、准二级)和等温吸附方程(Langmuir和Freundlich)分别对吸附数据进行拟合,并讨论吸附机理。结果表明:pH值为3、8、12时,纳米γ-Fe2O3对汞离子的吸附动力学方程符合准二级动力学模型(R2=0.997~0.999);288 K、298 K、308 K、318 K时,纳米γ-Fe2O3对汞离子的吸附过程更符合Langmuir吸附模型(R2=0.970~0.995),并且随温度升高,吸附量增加;在不同pH值下,纳米γ-Fe2O3对汞离子的吸附等温式可使用Langmuir模式(R2=0.983~0.996)进行表征,随p H值降低,吸附量减少,中性环境有利于吸附;在不同Ca2+浓度下,可用Langmuir等温吸附式拟合(R2=0.990~0.996)。通过Langmuir等温吸附式推算出最大吸附量随Ca2+浓度增加而减少。  相似文献   

15.
采用改进的滴加成球法合成壳聚糖树脂,用环氧氯丙烷对树脂进行交联,制备新型壳聚糖交联树脂.研究了交联树脂对Cr(Ⅵ)的吸附效果,探讨了溶液pH值、吸附时间、温度、Cr(Ⅵ)初始质量浓度等因素对吸附性能的影响及吸附热力学和动力学.结果表明,各因素中pH值对壳聚糖交联树脂吸附Cr(Ⅵ)影响较大.对初始质量浓度为120 mg/L的Cr(Ⅵ)溶液,壳聚糖交联树脂投加量为1 g/L,pH=3,温度为25℃,吸附2h时可达到最大吸附容量(72 mg/g).用Langmuir 等温模型和Pseudo second-order动力学模型对树脂的吸附过程进行线性拟合,R2分别为0.999 9和0.999 7,模型计算的饱和吸附容量qmax(73.53 mg/g)和平衡吸附量qe(29.23mg/g)与试验结果(72.10 mg/g和27.73 mg/g)基本吻合.Fick扩散模型表明,树脂对Cr(Ⅵ)的吸附可分为3个阶段,说明Cr(Ⅵ)的去除是物理吸附和化学吸附共同作用的结果.  相似文献   

16.
为研究砂石过滤吸附水中有机物的规律和性能,以西宁市湟水河水为研究对象,研究其对水溶液中COD的等温吸附特性,利用一级动力学模型、二级动力学模型对慢砂吸附COD动力学过程进行分析。结果表明:砂石对水溶液中COD的等温吸附特征符合非线性的Langmuir方程,通过Langmuir方程相关参数和试验校对得出二级动力学模型能更好地反映砂石对水溶液中COD的吸附动力学过程,并得出该条件下最大COD吸附量为36.36 mg/kg,而一级动力学模型的误差较大。在热力学分析过程中ΔH为负值说明净砂对水中COD的吸附为放热过程,ΔG也为负值说明吸附可自发进行,ΔS为正值说明吸附过程增加了固液界面的混乱度。  相似文献   

17.
目前,生物材料处理含铀废水已成为研究热点,为此,对硫酸盐还原菌(SRB)产生的生物材料的性能进行研究。通过接种硫酸盐还原菌制备了生物硫铁复合材料,探讨了p H值、U(VI)初始质量浓度和温度对生物硫铁去除U(VI)的影响,对比了硫铁、活性生物硫铁和硫酸盐还原菌(SRB)对U(VI)的去除效果。采用环境扫描电镜(SEM)、傅里叶红外光谱仪(FTIR)、高分辨率透射电镜(TEM)-X射线能谱(EDS)分析了生物硫铁结构特性及其对U(VI)的去除机理。结果表明,当初始p H值为7.5、温度为35℃,U(VI)初始质量浓度为7.2 mg/L、生物硫铁投加量为0.1 g时对U(VI)的去除效果最好,12 h完成反应,去除率达99.5%。活性生物硫铁除U(VI)效果优于硫铁和SRB,表明活性生物硫铁中硫铁化合物和SRB同时对U(VI)产生吸附与还原作用,具有速度快、效率高等优点。生物硫铁中的硫铁化合物为无定形态和不规则角柱体,角柱体厚度为20~150 nm,长度为200 nm~1μm。TEM-EDS分析表明,生物硫铁除U(VI)机理有胞外吸附与胞内积累,铀占总元素的质量分数为9.70%,特征峰明显,生物硫铁具有良好的U(VI)去除能力。FTIR分析表明,与U(VI)作用的基团主要有羟基、羧基、磷酸基和C=O、C—N、P—O。  相似文献   

18.
本文采用从油田污水中筛选出来的铜绿假单胞菌为菌种,以酵母膏为氮源,通过五组不同初始酵母膏浓度下的铜绿假单胞菌培养,对细胞吸光度、上清液吸光度、糖消耗率、界面张力等生长代谢参数的过程变化进行监测研究,确定铜绿假单胞菌以酵母膏为氮源的最优酵母膏浓度为2 g/L,其细胞吸光度、上清液吸光度最大值分别为1.80、0.54,糖浓度消耗率为0.13 g/(L·h),上清液-原油的界面张力最小值为0.34m N/m。  相似文献   

19.
炭化小麦秸秆对水中氨氮吸附性能的研究   总被引:3,自引:1,他引:2  
用直接炭化法制备了小麦秸秆吸附剂,并通过静态吸附试验研究了炭化小麦秸秆对氨氮的吸附性能和影响因素。结果表明:直接炭化法制备小麦秸秆吸附剂的最佳炭化温度为300℃;在试验的pH值范围内,pH=9时炭化小麦秸秆对氨氮的吸附去除最好;300℃时炭化小麦秸秆吸附不同质量浓度(ρ=30 mg/L、50 mg/L、100 mg/L)氨氮的动力学曲线符合准二级动力学模型,吸附常数k2分别为0.681 8g/(mg.min)、0.747 4 g/(mg.min)、1.025 0 g/(mg.min);直接炭化小麦秸秆吸附剂对氨氮吸附去除的最佳温度是30℃;不同温度下的吸附等温线可用Freundlich吸附等温方程进行拟合;由吸附热力学方程计算得到的等量吸附焓变ΔH>0,吸附自由能变ΔG<0,吸附熵变ΔS>0,表明炭化小麦秸秆对氨氮的吸附为吸热的和熵增加的自发过程,且属于物理吸附。  相似文献   

20.
通过甲醛的交联作用使单宁分子在黑荆树树皮内形成相互交联的大分子,低成本地制成原位固化黑荆树皮,用于吸附溶液中的Cr(VI).结果表明,原位固化黑荆树皮对Cr(VI)的吸附量随体系pH值的增加而减小,随Cr(VI)初始浓度和温度的升高而增加.在284 K、吸附4 h条件下,pH=1.96时原位固化黑荆树皮对Cr(VI)的吸附容量是pH=5.10时的2.7倍; pH=2.0时,Cr(VI)初始质量浓度从30 mg/L升高到120 mg/L,吸附容量由30.0 mg/g增大到100.1 mg/g; 溶液温度从284 K升高到298 K,吸附容量由76.2 mg/g增大到94.2 mg/g.原位固化黑荆树皮对Cr(VI)的吸附动力学可以用拟二级速度方程来描述.吸附前后的原位固化黑荆树皮红外谱图表明,Cr(VI)可能先被还原成Cr(Ⅲ),再与原位固化黑荆树皮中酚羟基螯合而被吸附.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号