首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary (1) Females of the myrmecophilous lycaenid butterfly, Jalmenus evagoras are far more likely to lay eggs on plants that contain their attendant ants, Iridomyrmex sp. 25 than on plants without ants, although the clutch sizes of individual egg masses laid in either situation is the same. (2) Ovipositing females respond to the presence or absence of ants before they alight on a potential food plant. Once they have landed, they are equally likely to ley eggs whether or not they encounter ants. (3) Ovipositing females prefer to lay eggs on plants that contain ant tended homopterans than on plants that contain only a few foraging ants. The presence of ant tended homopterans can act as a strong stimulus to induce females to lay eggs on plant species that differ from their original host species. (4) Ant dependent oviposition behavior has been described or suggested in 46 species of lycaenid and one riodinid. In general, the more dependent a species is upon ants for either food or protection, the more likely it is to use ants as cues in oviposition. Prominent characteristics of lycaenids that have ant dependent oviposition are described and discussed. (5) Myrmecophilous lycaenids that may use ants as cues in oviposition feed on a significantly wider range of plants than non-myrmecophilous lycaenids. Possible reasons for this pattern and its ecological significance are discussed.  相似文献   

2.
Myrmecophiles, i.e., organisms associated with ants live in a variety of ecological niches in the vicinity or inside ant colonies and employ different strategies to survive ant encounters. Because different niches are characterized by different encounter rates with host ants, strategies used to avoid ant aggressions should depend on these niches. This hypothesis was studied with three rove beetle species of the genus Pella, which are myrmecophiles of the ant Lasius fuliginosus and the non-myrmecophilous relative Drusilla canaliculata. Behavioral tests in the field revealed that Pella species are better adapted to interactions with ants than D. canaliculata, but that they use species-specific strategies in ant interactions. Pella cognata and Pella funesta avoid encounters with ants by swift movements. Chemical analyses of the defensive tergal gland secretions showed that P. cognata has replaced the aggression inducing undecane by the behaviorally neutral tridecane. P. funesta repels the ants by releasing the panic alarm pheromone sulcatone from its tergal gland resulting in an “ant free space” around the beetles. Finally, Pella laticollis uses a specific and unique appeasing behavior. Behavioral and chemical data did not reveal any indication for the mimicry of the ants' cuticular hydrocarbon profiles by any of the beetle species. It is discussed that the employed strategies correlate with the ecological niches of the beetles. P. cognata and P. funesta are living along ant trails with ample space to escape and the employed strategies are probably sufficient to escape from dangerous conflicts. In contrast, P. laticollis lives in refuse areas of ant nests with frequent ant encounters, and its appeasement strategy allows it to stay at the encounter site.  相似文献   

3.
Summary Pheidole titanis Wheeler, an ant that occurs in desert and deciduous thorn forest in the southwestern United States and western Mexico, is a predator on termites. In the dry season well-coordinated raids against termite foraging parties occur early in the morning or late in the afternoon, whereas in the wet season most raids occur at night. This seasonal shift in the timing of raids is due to the increased activity of a fly (Diptera: Phoridae) that is a specialist parasitoid on P. titanis workers and soldiers. When parasitic flies discover P. titanis nest entrances or raiding columns, workers stop foraging and defend themselves against oviposition attacks. Flies are only active during the day and never interfere with foraging at night. However, P. titanis does not increase the frequency of raids at night and, as a result, colonies collect less food in the wet season compared to the dry season. Presence of parasitic flies also interferes with normal defense behavior of P. titanis against conspecific and heterospecific enemy ants. Dissections of P. titanis workers and soldiers suggest that the parasitism rate by flies is less than 2% and observations indicate that parasitic flies are much rarer than their host workers and soldiers. Nonetheless, these parasites exert a strong ecological impact on their host.  相似文献   

4.
Summary Three lines of evidence, including interspecific comparisons, temporal division of foraging between size castes, and experimental manipulations, suggest that the diurnal parasitoid Neodohrniphora curvinervis (Diptera: Phoridae) influences both the caste sizes and numbers of leaf-cutter ants (Atta cephalotes) that leave their underground nests to collect leaves. At Parque Nacional Corcovado in Costa Rica, A. cephalotes was attacked by Neodohrniphora during the daytime, and foraged less during the day than at night; a closely related ant at the same site, A. colombica, had no phorid parasites and foraged exclusively during the day. Most daytime foragers of A. cephalotes were smaller than the lower size threshold for attack by Neodohrniphora, while nocturnal foragers, active when parasitoids were absent, were both larger than this threshold and within the energetically optimal size range for foraging. When I supplied artificial lighting to allow phorids to hunt at A. cephalotes colonies past dusk, ants foraged less than when light was provided but flies were removed. The influence of Neodohrniphora on the foraging activity of A. cephalotes may explain why investigations focusing on abiotic factors have largely failed to discover what drives this ant's daily foraging cycles, and suggests that forager sizes are influenced not only by energetic efficiency, but also by the threat of parasitism.  相似文献   

5.
Summary In parasitoid wasps, self-superparasitism (oviposition into a host already parasitized by the female herself) often contributes less to the reproductive success of the parasitoid than oviposition into a host previously parasitized by a conspecific (conspecific superparasitism). It could therefore often be profitable for parasitoids to avoid self-superparasitism. This requires a mechanism for either (1) the avoidance of previously searched areas and/or (2) the rejection of hosts containing eggs laid by the searching female. We investigated whether the solitary parasitoid Epidinocarsis lopezi is able to avoid self-superparasitism. We show that visits to previously searched patches were shorter than visits to unsearched patches and conclude that E. lopezi females leave a trail odour on patches they have searched. No differences were found between the time on patches previously searched by the wasp itself and on patches visited by conspecifics. However, E. lopezi superparasitizes fewer hosts previously parasitized by itself than hosts parasitized by a conspecific. Thus, they recognize an individual-specific mark in or on the host. We discuss how patch marking and host marking enable E. lopezi to avoid self-superparasitism.  相似文献   

6.
Summary. Oviposition site selection of herbivorous insects depends primarily on host plant presence which is essential for offspring survival. However, parasitoids can exploit host plant cues for host location. In this study, we hypothesised that herbivores can solve this dilemma by ovipositing within high plant diversity. A diverse plant species composition might represent an ‘infochemical shelter’, as a potentially complex volatile blend can negatively affect the host location ability of parasitoids. We examined this exemplarily for the egg-laying response of the generalist leaf beetle, Galeruca tanaceti, in relation to (1) host plant availability and (2) plant species diversity in the field. Further, we investigated the effect of odours from mixed plant species compositions on (3) leaf beetle oviposition site selection and on (4) the orientation of its specialised egg parasitoid, Oomyzus galerucivorus. In the field, egg clutch occurrence was positively related to the presence and quantity of two major host plants, Achillea millefolium (yarrow) and Centaurea jacea, and to the number of herbaceous plant species. In two-choice bioassays, female beetles oviposited more frequently on sites surrounded by an odour blend from a diverse plant species composition (including yarrow) than on sites with a pure grass odour blend. In the presence of yarrow odour and an odour blend from a diverse plant mixture (including yarrow) no difference in the oviposition response was recorded. Experienced parasitoid females were attracted to yarrow odours, but showed no response when yarrow odours were offered simultaneously with odours of a non-host plant. In conclusion, it could be shown in laboratory bioassays that the parasitoid responds only to pure host plant odours but not to complex odour blends. In contrast, the herbivore prefers to oviposit within diverse vegetation in the field and in the laboratory. However, the laboratory results also point to a priority of host plant availability over the selection of a potential ‘infochemical shelter’ for oviposition due to high plant diversity.  相似文献   

7.
When foraging partially depleted patches (i.e., a fraction of hosts are already parasitized), female parasitoids must decide: 1—whether to superparasitize, and 2—whether to stay in their current patch (thus missing the opportunity of finding a better patch elsewhere). To make these decisions, parasitoids may rely on different cues, produced both by the environment and by conspecifics. Animals thriving in different environments may differ in cues they use. In the solitary parasitoid Venturia canescens, thelytokous (asexual) and arrhenotokous (sexual) individuals are found in two contrasting environments. Thelytokous females, from anthropogenic conditions, are known to cope with superparasitism in an adaptive way. On the other hand, little is known about superparasitism by arrhenotokous females. We compared the host exploitation strategies of thelytokous and arrhenotokous females in partially depleted patches. Hosts parasitized by thelytokous females were more frequently avoided than those parasitized by arrhenotokous females, suggesting a stronger chemical marking of the former. Only thelytokous females used information from conspecifics for patch-leaving decisions. The conformity of the differences in the behavior of thelytokous and arrhenotokous females with the environmental conditions they experience in their habitat is discussed.  相似文献   

8.
In a field experiment, great tits Parus major foraged on a pair of artificial trees that were supplied with equal amounts of food. Wood ants Formica aquilonia were excluded from one tree, but foraged on the other. Great tits visited the tree without ants more frequently, and for longer periods of time, than the tree with ants. The time of foraging visits by tits in the tree with ants decreased as ant activity there increased. These results are the first to show that interference competition from ants can influence a bird’s choice of microhabitat in which to forage, as well as alter the time it spends foraging there. Received: 10 March 1995/Accepted after revision: 9 September 1995  相似文献   

9.
(S)-4-Methyl-3-heptanone is an alarm pheromone released from the mandibular glands in heads of harvester ants (Pogonomyrmex spp.). We used gas chromatography–mass spectrometry (GC–MS) to study the variation in amounts of this ketone among individual ants of a colony. P. barbatus contained about 2,000 ng per head, while only about half of this amount was found in heads of P. rugosus and P. californicus. Individuals of P. barbatus from three different nests contained rather uniform amounts of the alarm pheromone within each colony (16–30% coefficient of variation CV; normal distributions skewed left), but one nest under food stress had a significantly lower mean amount. In contrast, both sexes of a small braconid wasp Leiophron uniformis, a parasitoid of Lygus plant bugs, contained up to 10 ng of the same volatile enantiomer in their heads; and groups of either sex of the wasp exhibited normal distributions of quantities (64% CV, skewed right). The differences in the distributions between parasitoids and ants suggest that related members within a social ant colony may attempt to maintain a uniform level of ketone compared to independent variation in unrelated, solitary wasp individuals. When the wasp’s leg was grasped with forceps, it tried to escape and bite the forceps as it ejected (S)-4-methyl-3-heptanone (detected by solid phase microextraction, SPME, and GC–MS). Since adult wasps are nonsocial and feed only on nectar, their sharp piercing mandibles in combination with this escape/biting behavior indicate the ketone is used for defense rather than for an alarm function as in harvester ants. Costs of producing the semiochemical in wasp L. uniformis and ants P. barbatus and P. californicus are suggested since populations exhibited a significant linear increase in the amount of (S)-4-methyl-3-heptanone with an increase in body weight of individuals.  相似文献   

10.
Summary. Plant responses to herbivory might directly affect the herbivore (“direct” defences) or might benefit the plant by promoting the effectiveness of natural antagonists of the herbivores (“indirect” defences). Brussels sprouts attacked by Pieris brassicae larvae release volatiles that attract a natural antagonist of the herbivores, the parasitoid Cotesia glomerata, to the damaged plant. In a previous study, we observed that feeding by caterpillars on the lower leaves of the plant triggers the systemic release of volatiles detectable by the parasitoids from upper leaves of the same plant.?The role of these systemically induced volatiles as indirect defence and the dynamics of their emission were investigated in wind-tunnel dual choice tests with C. glomerata. The systemically induced emission of volatiles varied depending on leaf age and on plant age. Systemic induction affected parasitoid effectiveness, as induced plants could be more easily located by parasitoids than non-induced ones.?The role of the systemic induction as a direct defence was investigated through behavioural and feeding tests with P. brassicae. In dual choice assays, 1st instar larvae preferred to feed and fed more on systemically induced than on non-induced leaves. In single choice assays, the leaf area consumed by caterpillars was larger on systemically induced leaves than on non-induced control leaves. However, caterpillars fed on systemically induced leaves attained the same weight as those feeding on non-induced controls. In addition, P. brassicae pupae whose larvae were fed on systemically induced leaves had longer developmental times than those of larvae fed on non-induced leaves. Adult oviposition behavior was not influenced by systemic induction.?We conclude that systemically induced responses in cabbage might reduce P. brassicae fitness both directly, by affecting their development and feeding behavior and indirectly by making caterpillars and pupae more vulnerable to attack by carnivores. The occurrence of a possible relationship between direct and indirect defence is discussed. Received 24 January 2001; accepted 3 May 2001.  相似文献   

11.
Graded recruitment in a ponerine ant   总被引:6,自引:0,他引:6  
Summary (1) The giant tropical ant, Paraponera clavata, exhibits graded recruitment responses, depending on the type, quantity, and quality of a food source. More ants are initially recruited to a large prey or scavenge item than to a large quantity of sugar water. (2) Individual ants encountering prey items gauge the size and/or unwieldiness of the item, regardless of the weight, when determining whether to recruit. (3) The trail pheromone of this species is often used as an orientation device by individual ants, independent of recruitment of nestmates. (4) It is proposed that the foraging behavior of P. clavata represents one of the evolutionary transitions from the independent foraging activities of the primitive ants to the highly coordinated cooperative foraging activities of many higher ants.  相似文献   

12.
Energy intake and expenditure on natural foraging trips were estimated for the seed-harvester ants, Pogonomyrmex maricopa and P. rugosus. During seed collection, P. maricopa foraged individually, whereas P. rugosus employed a trunk-trail foraging system. Energy gain per trip and per minute were not significantly different between species. There was also no interspecific difference in energy cost per trip, but energy cost per minute was lower for P. maricopa foragers because they spent on average 7 min longer searching for a load on each trip. Including both unsuccessful and successful foraging trips, average energy gain per trip was more than 100 times the energy cost per trip for both species. Based on this result, we suggest that time cost incurred during individual foraging trips is much more important than energy cost in terms of maximizing net resource intake over time. In addition, because energy costs are so small relative to gains, we propose that energy costs associated with foraging may be safely ignored in future tests of foraging theory with seed-harvesting ant species.  相似文献   

13.
The theoretical value of encounters with parasitized hosts for parasitoids   总被引:1,自引:1,他引:0  
A female parasitoid searching for hosts in a patch experiences a diminishing encounter rate with unparasitized and thus suitable hosts. To use the available time most efficiently, it constantly has to decide whether to stay in the patch and continue to search for hosts or to search for and travel to another patch in the habitat. Several informational cues can be used to optimize the searching success. Theoretically, encounters with unparasitized hosts should lead to a prolonged search in a given patch if hosts are distributed contagiously. The results of empirical studies strongly support this hypothesis. However, it has, to date, not been investigated theoretically whether encounters with already parasitized hosts (which usually entail time costs) provide a parasitoid with valuable information for the optimization of its search in depletable patches, although the empirical studies concerning this question so far have produced ambiguous results. Building on recent advances in Bayesian foraging strategies, we approached this problem by modeling a priori searching strategies (which differ in the amount of information considered) and then testing them in computer simulations. By comparing the strategies, we were able to determine whether and how encounters with already parasitized hosts can yield information that can be used to enhance a parasitoid’s searching success.
Munjong KolssEmail: Phone: +41-26-3008856Fax: +41-26-3009698
  相似文献   

14.
Summary The present study aimed to test the possible function of the aphid alarm pheromone (E)--farnesene (EBF) as a host finding kairomone for aphid primary parasitoids. Extracts of volatile emissions of undisturbed aphids and of aphids under parasitoid attack were obtained by air entrainment. Extracts of cornicle secretions were gained by disturbing aphids and taking their secretions into solution. Extracts were compared by gas chromatography. Only air entrainments of aphids under attack and solvent extracts of cornicle secretions contained the alarm pheromone. In Y-tube olfactometer bioassays, femaleA. uzbekistanicus were attracted to aphid groups under attack of parasitoids, presumably by released EBF. High concentrations of synthetic EBF (1.4 µg to 5.7 µg) also attractedA. uzbekistanicus females. Females with oviposition experience reacted more readily to lower concentrations of EBF than females without experience. In experiments designed as Petri-dish bioassays, the test animals could contact filter paper discs that were treated with solutions containing EBF. Behavioural effects like antennation or stinging attack were not observed. With computer video analysis of parasitoid movements, some effects onA. uzbekistanicus behaviour were detected, again indicating attraction to EBF.As the volatile aphid alarm pheromone attractedA. uzbekistanicus females, it can be concluded that this chemical stimulus acts as a host finding kairomone for this parasitoid species. However, its effect over long distances seems to be limited due to the relatively high concentrations required for reactions. Of two other parasitoid species examined (P. volucre andL. testaceipes) onlyP. volucre was also significantly attracted to the volatile EBF in the Y-tube olfactometer.  相似文献   

15.
Summary. Cotesia plutellae is a specialist parasitoid of Plutella xylostella. This specificity is potentially under the control of several factors before and after oviposition. Thereby, the stimuli that lead female parasitoids to host locations and to oviposition, might be at the basis of the specificity. We explore here the response of C. plutellae females exposed to host cuticular lipids. A total cuticular lipid extract of host caterpillars was fractionated into a hydrocarbon fraction and a non-hydrocarbon fraction. Neither fraction alone had any effect on oviposition behaviour in C. plutellae but the hydrocarbon fraction alone did seem to have a positive effect on the rate of antennal contact by the females. To induce oviposition behaviour, both fractions were necessary and reflect cooperation between at least one compound in each fraction. Identification of cuticular lipids shows that hydrocarbons were dominant (77%). Non-hydrocarbon compounds were mainly represented by 15-nonacosanone (18% of the total lipid extract). This ketone is rare in insect cuticle lipids and is thought to originate from the cabbage epicuticle where it is dominant with n-C29 and 14- and 15-nonacosanol also found among the cuticular lipids of the host caterpillar.  相似文献   

16.
In solitary parasitoids, in which only one individual can emerge per host, the adaptive value of conspecific superparasitism is a function of the survival probability of the egg laid by the superparasitizing female. In the few cases which these probabilities are compared, the oldest immature has an advantage over the other individuals. We measured the acceptance rate of parasitized hosts and survival rate of supernumerary larvae in Anaphes victus (Hymenoptera: Mymaridae) in relation to the interval between ovipositions. When this interval was 5–7 days, the first immature was at the prepupa and pupa stage respectively, and female Anaphes victus changed their oviposition behavior markedly. They killed the developing parasitoid of their own species before ovipositing in it. The progeny of these females, which are normally primary parasitoids, developed thereafter as hyperparasitoids. Indeed, in contrast with other species, the survival of the second female's progeny increased with the time interval between ovipositions. This type of facultative intraspecific hyperparasitism is different from autoparasitism in Aphelinidae and has never been mentioned in other parasitoids; it would be adaptive if females of this short-lived species encounter low-quality patches.  相似文献   

17.
Encounter rate and task allocation in harvester ants   总被引:7,自引:0,他引:7  
As conditions change, social insect colonies adjust the numbers of workers engaged in various tasks, such as foraging and nest work. This process of task allocation operates without central control; individuals respond to simple, local cues. This study investigates one such cue, the pattern of an ant's interactions with other workers. We examined how an ant's tendency to perform midden work, carrying objects to and sorting the refuse pile of the colony, is related to the recent history of the ant's brief antennal contacts, in laboratory colonies of the red harvester ant, Pogonomyrmex barbatus. The probability that an ant performed midden work was related to its recent interactions in two ways. First, the time an ant spent performing midden work was positively correlated with the number of midden workers that ant had met while it was away from the midden. Second, ants engaged in a task other than midden work were more likely to begin to do midden work when their rate of encounter per minute with midden workers was high. Cues based on interaction rate may enable ants to respond to changes in worker numbers even though ants cannot count or assess total numbers engaged in a task. Received: 1 July 1998 / Accepted: 15 November 1998  相似文献   

18.
Summary. Because generalist ants are aggressive towards foreign insects, the recognition of homopterans by tending ants is critical in ant/homopteran trophobiosis. Herein we report experimental evidence indicating that Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae) learn to associate the production of honeydew with the chemical characteristics of homopteran cuticle, suppressing ant aggression and allowing the ants to tend homopterans. Although chemically-mediated associative learning is well understood in honeybee foraging, to our knowledge, it has not been reported before in ant/homopteran trophobiosis.  相似文献   

19.
The host choice and sex allocation decisions of a foraging female parasitoid will have an enormous influence on the life-history characteristics of her offspring. The pteromalid Pachycrepoideus vindemiae is a generalist idiobiont pupal parasitoid of many species of cyclorrhaphous Diptera. Wasps reared in Musca domestica were larger, had higher attack rates and greater male mating success than those reared in Drosophila melanogaster. In no-choice situations, na?ve female P. vindemiae took significantly less time to accept hosts conspecific with their natal host. Parasitoids that emerged from M. domestica pupae spent similar amounts of time ovipositing in both D. melanogaster and M. domestica. Those parasitoids that had emerged from D. melanogaster spent significantly longer attacking M. domestica pupae. The host choice behaviour of female P. vindemiae was influenced by an interaction between natal host and experience. Female P. vindemiae reared in M. domestica only showed a preference among hosts when allowed to gain experience attacking M. domestica, preferentially attacking that species. Similarly, female parasitoids reared on D. melanogaster only showed a preference among hosts when allowed to gain experience attacking D. melanogaster, again preferentially attacking that species. Wasp natal host also influenced sex allocation behaviour. While wasps from both hosts oviposited more females in the larger host, M. domestica, wasps that emerged from M. domestica had significantly more male-biased offspring sex ratios. These results indicate the importance of learning and natal host size in determining P. vindemiae attack rates, mating success, host preference and sex allocation behaviour, all critical components of parasitoid fitness. Electronic Publication  相似文献   

20.
This study compares two basic models for the origin and maintenance of colony gestalt odor in the polygynous ant species Cataglyphis niger. In the first model, queens are centers of de novo biosynthesis and distribution of recognition odors (“queen-centered” model); in the second, colony odors are primarily synthesized and distributed by workers (“worker-centered” model). We tested the behavioral patterns that are predicted from each model, and verified by biochemical means the distributional directionality of these signals. Encounters between nestmates originating from split colonies were as amicable as between nestmates from non-split colonies; queenless ants were as aggressive as their queenright nestmates, and both were equally aggressed by alien ants. These results indicate that queens have little impact on the recognition system of this species, and lend credence to the worker-centered model. The queen-centered model predicts that unique queen substances should be produced in appreciable quantities and that, in this respect, queens should be more metabolically active than workers. Analysis of the chemical composition of postpharyngeal glands (PPGs) or cuticular extracts of queens and workers revealed high similarity. Quantitatively, queens possessed significantly greater amounts of hydrocarbons in the PPG than workers, but the amount on the thoracic epicuticle was the same. Queens, however, possess a lower hydrocarbon biosynthesis capability than workers. The biochemical evidence thus refutes the queen-centered model and supports a worker-centered model. To elucidate the directionality of cue distribution, we investigated exchange of hydrocarbons between the castes in dyadic or group encounters in which selective participants were prelabeled. Queens tended to receive more and give less PPG content, whereas transfer to the epicuticle was low and similar in all encounters, as predicted from the worker-centered hypothesis. In the group encounters, workers transferred, in most cases, more hydrocarbons to the queen than to a worker. This slight preference for the queen is presumably amplified in a whole colony and can explain their copious PPG content. We hypothesize that preferential transfer to the queen may reflect selection to maintain her individual odor as close to the average colony odor as possible. Received: 4 November 1997 / Accepted after revision: 5 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号