首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
There is some concern that antibiotic residues in land-applied manure may promote the emergence of antibiotic resistant bacteria in the environment. The goal of this study was to determine whether or not soil bound antibiotics are still active against bacteria. The procedure involved sorbing various amounts of tetracycline or tylosin on two different textured soils (Webster clay loam [fine-loamy, mixed, superactive, mesic Typic Endoaquolls] and Hubbard loamy sand [sandy, mixed, frigid Entic Hapludolls]), incubating these soils with three different bacterial cultures (an antibiotic resistant strain of Salmonella sp. [Salmonella(R)], an antibiotic sensitive strain of Salmonella sp. [Salmonella(S)], and Escherichia coli ATCC 25922), and then enumerating the number of colony forming units relative to the control. Incubation was done under both static and dynamic conditions. Soil-adsorbed antibiotics were found to retain their antimicrobial properties since both antibiotics inhibited the growth of all three bacterial species. Averaged over all other factors, soil adsorbed antimicrobial activity was higher for Hubbard loamy sand than Webster clay loam, most likely due to higher affinity (higher clay content) of the Webster soil for antibiotics. Similarly, there was a greater decline in bacterial growth with tetracycline than tylsoin, likely due to greater amounts of soil-adsorbed tetracycline and also due to lower minimum inhibitory concentration of most bacteria for tetracycline than tylosin. The antimicrobial effect of tetracycline was also greater under dynamic than static growth conditions, possibly because agitation under dynamic growth conditions helped increase tetracycline desorption and/or increase contact between soil adsorbed tetracycline and bacteria. We conclude that even though antibiotics are tightly adsorbed by clay particles, they are still biologically active and may influence the selection of antibiotic resistant bacteria in the terrestrial environment.  相似文献   

2.
从长期受农药苯磺隆污染的土壤中通过采用富集培养分离技术得到4株以苯磺隆为唯一碳源生长的细菌,分别将其命名为B1、B2、B3和B4。通过观察这4种菌株的形态学特征,研究其生理生化特性以及分析其16S rDNA序列,初步鉴定菌株B1为铜绿假单胞菌(Pseudomonas aeruginosa),B2为戴尔福特菌(Delftia sp.),B3为微杆菌(Microbacterium sp.),B4为产碱杆菌(Alcaligenes sp.)。并通过研究温度、初始pH值、接种量、苯磺隆初始浓度、培养基体积、氮源、碳源、Mg^2+浓度等因素对4种菌株生长情况的影响,确定了菌株的最佳生长条件。结果显示,B1菌株的最适温度为35℃,其他3株菌株均为30℃。菌株B3最适pH为8.0,其余3株菌株均为pH7.0。B1和B3菌株最适接种量为15%,B2和B4最适接种量为10%。菌株B3最适苯磺隆初始浓度为100mg·L^-1,其余菌株最适苯磺隆初始浓度均为200mg·L^-1。4株菌株最适培养基体积均为75mL,最适氮源均为硝酸铵,最适碳源均为葡萄糖。B2菌株最适Mg^2+浓度为100mg·L^-1,其余3株菌株均为200mg·L^-1。B1和B4菌株最适NaCl浓度为20g·L^-1,B2菌株NaCl浓度为5-30g·L^-1,B3菌株最适NaCl浓度为50g·L^-1。该结果为利用微生物对农药苯磺隆污染的土壤进行原位生物修复提供理论依据。  相似文献   

3.
Reports of enhanced atrazine degradation and reduced residual weed control have increased in recent years, sparking interest in identifying factors contributing to enhanced atrazine degradation. The objectives of this study were to (i) assess the spatial distribution of enhanced atrazine degradation in 45 commercial farm fields in northeastern Colorado (Kit Carson, Larimer, Logan, Morgan, Phillips, and Yuma counties) where selected cultural management practices and soil bio-chemo-physical properties were quantified; (ii) utilize Classification and Regression Tree (CART) Analysis to identify cultural management practices and (or) soil bio-chemophysical attributes that are associated with enhanced atrazine degradation; and (iii) translate our CART Analysis into a model that predicts relative atrazine degradation rate (rapid, moderate, or slow) as a function of known management practices and (or) soil properties. Enhanced atrazine degradation was widespread within a 300-km radius across northeastern Colorado, with approximately 44% of the fields demonstrating rapid atrazine degradation activity (laboratory-based dissipation time halflife [DT50] < 3 d). The most rapid degradation rates occurred in fields that received the most frequent atrazine applications. Classification and Regression Tree Analysis resulted in a prediction model that correctly classified soils with rapid atrazine DT50 80% of the time and soils with slow degradation (DT50 > 8 d) 62.5% of the time. Significant factors were recent atrazine use history, soil pH, and organic matter content. The presence/absence of atzC polymerase chain reaction (PCR) product was not a significant predictor variable for atrazine DT50. In conclusion, enhanced atrazine degradation is widespread in northeastern Colorado. If producers know their atrazine use history, soil pH, and OM content, they should be able to identify fields exhibiting enhanced atrazine degradation using our CART Model.  相似文献   

4.
Composting is the controlled biological decomposition of organic matter by microorganisms during predominantly aerobic conditions. It is being increasingly adopted due to its benefits in nutrient recycling, soil reclamation, and urban land use. However, it poses an environmental concern related to its contribution to greenhouse gas production. During composting, activities of methanogenic and methanotrophic communities influence the net methane (CH4) release into the atmosphere. Using quantitative polymerase chain reaction (qPCR), this study was aimed at assessing the changes in the methyl-coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) copy numbers for estimation of methanogenic and methanotrophic communities, respectively. Open-windrow composting of beef cattle (Bos Taurus L.) manure with temperatures reaching > 55 degrees C was effective indegrading commensal Escherichia coli within the first week. Quantification of community DNA revealed significant differences in mcrA and pmoA copy numbers between top and middle sections. Consistent mcrA copy numbers (7.07 to 8.69 log copy number g(-1)) were detected throughout the 15-wk composting period. However, pmoA copy number varied significantly over time, with higher values during Week 0 and 1 (6.31 and 5.41 log copy number g(-1), respectively) and the lowest at Week 11 (1.6 log copy number g(-1)). Net surface CH4 emissions over the 15-wk period were correlated with higher mcrA copy number. Higher net ratio of mrA: pmoA copy numbers was observed when surface CH4 flux was high. Our results indicate that mcrA and pmoA copy numbers vary during composting and that methanogen and methanotroph populations need to be examined in conjunction with net CH4 emissions from open-windrow composting of cattle feedlot manure.  相似文献   

5.
In Mississippi, spent poultry litter is used as fertilizer. Nutrient and bacterial levels in litter and nutrient levels in litter-fertilized (L+) soil are known, but less is known of bacterial levels in L+ soil. This study compared contiguous L+ and non-litter-fertilized (L-) soils comprising 15 soil types on five farms in April through May 2009. Levels of pH; NO-N; and Mehlich-3-extractable (M3) and water-extractable (WE) P, Ca, K, and Cu were higher in L+ than in L- soil. Total C; total N; NH-N; and M3 and WE Na, Fe, and Zn did not differ in L+ and L- soil. Bacterial levels were higher in 0- to 5-cm than in 5- to 10-cm cores. Levels were higher in L+ than in L- soil for culturally determined heterotrophic plate counts and staphylococci and were lower for total bacteria estimated by quantitative polymerase chain reaction (qPCR) of 16S rRNA, but cultural levels of thermotolerant coliforms, , , and enterococci were not different. Cultural presence/absence (CPA) tests and qPCR for spp., spp., and spp. detected only spp., which did not differ in L+ (CPA = 77% positive samples; mean qPCR = 0.65 log genomic units [gu] g) and L- (CPA = 70% positive samples; mean qPCR = 0 log gu g) soils. Litter applications were associated with higher levels of pH, P, Cu, heterotrophic plate counts, and staphylococci. Fecal indicator and enteric pathogen levels were not affected. We conclude that, although some litter-derived nutrients and bacteria persisted between growing seasons in L+ soils, enteric pathogens did not.  相似文献   

6.
A field study was conducted to determine the fate of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) within the root zone (0 to 90 cm) of a sandy soil cropped with sorghum [Sorghum bicolor (L.) Moench] in Gainesville, Florida. Atrazine was uniformly applied at a rate of 1.12 kg ai. ha(-1) to a sorghum crop under moderate irrigation, optimum irrigation, and no irrigation (rainfed), 2 d after crop emergence. Bromide as a tracer for water movement was applied to the soil as NaBr at a rate of 45 kg Br ha(-1), 3 d before atrazine application. Soil water content, atrazine, and Br concentrations were determined as a function of time using soil samples taken from the root zone. Atrazine sorption coefficients and degradation rates were determined by depth for the entire root zone in the laboratory. Atrazine was strongly adsorbed within the upper 30 cm of soil and most of the atrazine recovered from the soil during the growing season was in that depth. The estimated half-life for atrazine was 32 d in topsoil to 83 d in subsoil. Atrazine concentration within the root zone decreased from 0.44 kg ai. ha(-1) 2 days after application (DAA) to 0.1 kg a.i. ha(-1) 26 DAA. Negligible amounts of atrazine (approximately 5 microg kg(-1)) were detected below the 60-cm soil depth by 64 DAA. Most of the decrease in atrazine concentration in the root zone over time was attributed to degradation. In contrast, all applied bromide had leached past the 60-cm soil depth during the same time interval.  相似文献   

7.
Biodegradation of pentyl amine and aniline from petrochemical wastewater   总被引:2,自引:0,他引:2  
The objectives of the project were to isolate a bacterial strain capable of degrading pentyl amine and aniline and to define the optimal pentyl amine and aniline degradation conditions for this bacterial strain. The bacterial strain was isolated from activated sludge obtained from a Northeastern China treatment facility for petrochemical wastewater rich in pentyl amine and aniline. Once the strain was isolated, five triplicate (5) batch tests were used to establish the conditions for maximum pentyl amine and aniline degradation, by varying one at a time the following five factors: temperature, pH, reaction time, pollutant concentrations and aeration rate. In a final test, oil refinery sludge was inoculated with the strain and tested for the degradation of pentyl amine and aniline under optimal conditions, while observing the degradation pathway of pentyl amine and aniline. The isolated strain, PN1001, is a member of the Pseudomonas species and it was capable of degrading pentyl amine and aniline. The optimal reactor conditions for the degradation of a mixture of pentyl amine and aniline, at a concentration ranging between 150 and 200mg/L, were found to be 30 degrees C at a pH of 7.0, under a reaction time of 24h and a maximum solution dissolved oxygen level of 6 mgO(2)/L. Under such conditions, the strain PN1001 degraded 93% and 89% of the pentyl amine and aniline, respectively, aniline being more toxic and demonstrating a more complex degradation pathway. The strain PN1001 degraded more contaminants when both were present because of the pi and sigma electron cloud coordination functions of aniline and pentyl amine, respectively, presumed to reduce the toxic effect of aniline. Once inoculated with the strain, oil refinery sludge degraded 93% and 88% of the pentyl amine and aniline, compared to the strain alone which degraded 72% and 82%, likely because of the sludge's buffering effect against the toxic environment.  相似文献   

8.
Wood chip bioreactors are receiving increasing attention as a means of reducing nitrate in subsurface tile drainage systems. Agrochemicals in tile drainage water entering wood chip bioreactors can be retained or degraded and may affect denitrification. The degradation of 5 mg L atrazine, enrofloxacin, and sulfamethazine under denitrifying conditions in wood chips from an in situ reactor was determined. The impact of these chemicals on denitrifying microorganisms was assessed using the denitrification potential assay, most probable number (MPN), and quantitative polymerase chain reaction targeting the gene of the denitrifiers. Initial half-lives for these chemicals in the aqueous phase were 0.98 d for atrazine, 0.17 d for enrofloxacin, and 6.2 d for sulfamethazine. Similar rates of disappearance in autoclaved and nonautoclaved wood chip solutions during the first 48 h suggested sorption was the dominant mechanism. The presence of atrazine did not impair denitrification potential, the MPN, or the copy number. The denitrifier MPN and copy number in sulfamethazine- and enrofloxacin-treated microcosms were less than the control within the first 5 d after chemical addition, whereas the denitrification potentials were not affected. However, after 45 d the denitrification rate, MPN and gene copy numbers for sulfamethazine and enrofloxacin were similar to that of the no-chemical control, indicating that acclimation of the denitrifier population to the antibiotic or reduced bioavailability over time allowed recovery of the denitrifier population.  相似文献   

9.
Soil bacteria have developed novel metabolic abilities resulting in enhanced atrazine degradation. Consequently, there is a need to evaluate the effects of enhanced degradation on parameters used to model atrazine fate and transport. The objectives of this study were (i) to screen Colorado (CO) and Mississippi (MS) atrazine-adapted and non-adapted soil for genes that code for enzymes able to rapidly catabolize atrazine and (ii) to compare atrazine persistence, Q(10), beta, and metabolite profiles between adapted and non-adapted soils. The atzABC and/or trzN genes were detected only in adapted soil. Atrazine's average half-life in adapted soil was 10-fold lower than that of the non-adapted soil and 18-fold lower than the USEPA estimate of 3 to 4 mo. Q(10) was greater in adapted soil. No difference in beta was observed between soils. The accumulation and persistence of mono-N-dealkylated metabolites was lower in adapted soil; conversely, under suboptimal moisture levels in CO adapted soil, hydroxyatrazine concentrations exceeded 30% of the parent compounds' initial mass. Results indicate that (i) enhanced atrazine degradation and atzABC and/or trzN genes are likely widespread across the Western and Southern corn-growing regions of the USA; (ii) persistence of atrazine and its mono-N-dealkylated metabolites is significantly reduced in adapted soil; (iii) hydroxyatrazine can be a major degradation product in adapted soil; and (iv) fate, transport, and risk assessment models that assume historic atrazine degradation pathways and persistence estimates will likely overpredict the compounds' transport potential in adapted soil.  相似文献   

10.
Mineralization of atrazine and formation of extractable and non-extractable "bound" residues were followed under laboratory conditions in two contrasting soils (organic C, texture, and atrazine application history) from northern Spain. The soils, a Humic Cambisol (MP) and a Gleyic Cambisol (G) were incubated with labeled atrazine (ring-13C atrazine) at field application dose and measurements were made at different time intervals during 3 mo. Fate and behavior of atrazine along the incubation showed different patterns between the two soils, the time taken for degradation of 50% (DT50) being 9 and 44 d for MP and G soils, respectively. In MP soil, with 40 yr of atrazine application and lower organic C and clay content, more than 89% of U-13C-atrazine added was mineralized after 12 wk, with most mineralization occurring within the first 2 wk. G soil, with 10 yr of atrazine application, exhibited a more progressive U-13C-atrazine mineralization, reaching 54% of initially added atrazine at 12 wk. Hydroxyatrazine and deisopropylatrazine were the metabolites founded in the extractable fraction, demonstrating that both chemical and biological processes are involved in atrazine degradation. Soil G showed during all the incubation times an extractable residues fraction greater than that in MP soil, indicating a high potential risk of soil and water contamination. Rapid microbial degradation through s-triazine ring cleavage was proposed to be the main decomposition pathway of atrazine for the two soils studied. Bound residues pool also differed notably between soils accounting for 9 and 41% of initially added atrazine, the higher values shown by soil with higher organic matter and clay content (G soil).  相似文献   

11.
Minimizing herbicide runoff and mobility in the soil and thus potential contamination of water resources is a national concern. Metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] and atrazine [2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine] dynamics in surface soils and in runoff waters were studied on six 0.2-ha sugarcane (Saccharum spp.) plots of a Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquept) during three growing seasons under different best management practices. Metribuzin was applied in the spring as a postemergence herbicide and atrazine was applied following winter harvest. Both herbicides were applied on top of the sugarcane rows as 0.6- or 0.9-m band width application, or broadcast application, where the entire area was treated. Maximum effluent concentrations were measured from the broadcast treatment and ranged from 600 to 1100 microg L(-1) for atrazine and 250 to 450 microg L(-1) for metribuzin. Atrazine runoff losses were highest for the broadcast treatment (2.8-11% of that applied) and lowest for the 0.6-m band treatment (1.9-7.6%), with a similar trend for metribuzin losses. Measured extractable herbicides from the surface soil exhibited a sharp decrease with time and were well described with a simple first-order decay model. For atrazine, estimates for the decay rate (lambda) were higher than for metribuzin. Results based on laboratory adsorption-desorption (kinetic-batch) measurements were consistent with field observations. The distribution coefficients (Kd) for atrazine exhibited stronger retention over time in comparison with metribuzin on the Commerce soil. Moreover, discrepancies between adsorption isotherm and desorption indicated slower release and that hysteresis was more pronounced for atrazine compared with metribuzin.  相似文献   

12.
Field history and dissipation of atrazine and metolachlor in Colorado   总被引:1,自引:0,他引:1  
Farmers in eastern Colorado have commented that atrazine does not provide the length of weed control that they expected in fields that have received multiple applications of the herbicide. Multiple laboratory studies suggest that atrazine dissipates more rapidly in soils with a history of atrazine use compared with soils that had not been treated with the herbicide and this could be related to the above observation. Field and laboratory studies were conducted to determine the rate of dissipation of atrazine and metolachlor in fields in Colorado. The published half-lives of atrazine and metolachlor are 60 and 56 d, respectively. In the field studies, the half-lives of atrazine and metolachlor in the top 15 cm of the soil ranged between 3.5 and 7.2 d and 17.9 and 18.8 d, respectively. In laboratory studies, the half-life of atrazine varied from 1.4 to 19.8 d with the shortest half-life occurring in soils which had been treated with atrazine for at least 5 yr. The longest half-life was in a soil that had never received atrazine. The half-life of metolachlor in these same soils varied from 10.6 to 28.2 d. There was no apparent relationship between the half-life of metolachlor and the half-life of atrazine in the laboratory studies. These results confirm farmers' observation of the shorter residual activity of atrazine in Colorado fields receiving atrazine over multiple years.  相似文献   

13.
This study investigated the effects of organic and inorganic nutrients on the microbial degradation of the common soil contaminant pyrene. The material used in this investigation was collected from potted trees that had been growing for over a year in a soil artificially contaminated with polycyclic aromatic hydrocarbons. Soil was removed from the nonroot (bulk) and root (rhizosphere) zones of these pots and used in mineralization studies that tracked microbial degradation of 14C-pyrene. The factors influencing degradation in these zones were then tested by amendment with essential inorganic nutrients or with root-derived materials. As expected, pyrene mineralization was greater in soil removed from the rhizosphere than in bulk soil. The rate of mineralization in rhizosphere soil was inhibited by inorganic nutrient amendment, whereas nutrients stimulated mineralization in the bulk soil. Pyrene mineralization in bulk soil was also increased by the addition of root extracts intended to mimic exudation by living roots. However, amendment with excised fine roots that were allowed to decay over time in soil initially inhibited mineralization. With time, the rate of mineralization increased, eventually exceeding that of unamended bulk soil. Combined, the initial inhibition and subsequent stimulation produced a zero net impact of decaying fine roots on bulk soil mineralization. Our results, in conjunction with known temporal patterns of fine root dynamics in natural systems, support the idea that seasonal variations in nutrient and substrate availability may influence the long-term effect of plants on organic degradation in soil, possibly reducing or negating the beneficial effects of vegetation that are often observed in short-term studies.  相似文献   

14.
An area of interest in precision farming is variable-rate application of herbicides to optimize herbicide use efficiency and minimize negative off-site and non-target effects. Site-specific weed management based on field scale management zones derived from soil characteristics known to affect soil-applied herbicide efficacy could alleviate challenges posed by post-emergence precision weed management. Two commonly used soil-applied herbicides in dryland corn (Zea mays L.) production are atrazine and metolachlor. Accelerated dissipation of atrazine has been discovered recently in irrigated corn fields in eastern Colorado. The objectives of this study were (i) to compare the rates of dissipation of atrazine and metolachlor across different soil zones from three dryland no-tillage fields under laboratory incubation conditions and (ii) to determine if rapid dissipation of atrazine and/or metolachlor occurred in dryland soils. Herbicide dissipation was evaluated at time points between 0 and 35 d after soil treatment using a toluene extraction procedure with GC/MS analysis. Differential rates of atrazine and metolachlor dissipation occurred between two soil zones on two of three fields evaluated. Accelerated atrazine dissipation occurred in soil from all fields of this study, with half-lives ranging from 1.8 to 3.2 d in the laboratory. The rapid atrazine dissipation rates were likely attributed to the history of atrazine use on all fields investigated in this study. Metolachlor dissipation was not considered accelerated and exhibited half-lives ranging from 9.0 to 10.7 d in the laboratory.  相似文献   

15.
The half-lives, degradation rates, and metabolite formation patterns of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] were determined in an anaerobic wetland soil incubated at 24 degrees C for 112 d. At 0, 7, 14, 28, 42, 56, and 112 d, the soil and water were analyzed for atrazine and metolachlor, and their major metabolites. The soil oxidation-reduction potential reached -200 mV after 14 d. Degradation reaction rates were first-order for atrazine in anaerobic soil and for metolachlor in the aqueous phase. Zero-order reaction rates were best fit for atrazine in the aqueous phase and metolachlor in anaerobic soil. In anaerobic soil, the half-life was 38 d for atrazine and 62 d for metolachlor. In the aqueous phase above the soil, the half-life was 86 d for atrazine and 40 d for metolachlor. Metabolites detected in the anaerobic soil were hydroxyatrazine and deethylatrazine for atrazine, and relatively small amounts of ethanesulfonic acid and oxanilic acid for metolachlor. Metabolites detected in the aqueous phase above the soil were hydroxyatrazine, deethylatrazine, and deisopropylatrazine for atrazine, and ethanesulfonic acid and oxanilic acid for metolachlor. Concentrations of metabolites in the aqueous phase generally peaked within the first 25 d and then declined. Results indicate that atrazine and metolachlor can degrade under strongly reducing conditions found in wetland soils. Metolachlor metabolites, ethanesulfonic acid, and oxanilic acid are not significantly formed under anaerobic conditions.  相似文献   

16.
Contaminant sorption within the soil matrix frequently limits biodegradation. However, contaminant bioavailability can be species-specific. This study investigated bioavailability of phenanthrene (PHE) to two PHE-degrading bacteria (Pseudomonas strain R and isolate P5-2) in the presence of rhamnolipid biosurfactant and/or a biosurfactant-producing bacterium, Pseudomonas aeruginosa ATCC 9027. Pseudomonas strain R mineralized more soil-sorbed PHE than strain P5-2, but in aqueous cultures the rate and extent of PHE mineralization by P5-2 exceeded that by P. strain R. In Fallsington sandy loam (fine-loamy, mixed, active, mesic Typic Endoaquult) (high PHE-sorption capacity) the addition of rhamnolipid increased PHE mineralization by P. strain R. Phenanthrene mineralization in soils inoculated with P5-2 was minimal and no enhancement in PHE degradation was observed when biosurfactant was added. Co-inoculation of Fallsington sandy loam with the biosurfactant producer did not affect PHE mineralization by isolate P5-2, but significantly enhanced PHE mineralization by P. strain R. The enhancement of PHE mineralization could not be explained by P. aeruginosa-mediated PHE degradation. The addition of rhamnolipid at concentrations above the critical micelle concentration (CMC) resulted in enhanced PHE release from test soils. These results suggest that the PHE-degrading strains were able to access different pools of PHE and that the biosurfactant-enhanced release of PHE from soils did not result in enhanced biodegradation. The results also demonstrated that bacteria with the catabolic potential to degrade sorbed hydrophobic contaminants could interact commensally with surfactant-producing strains by an unknown mechanism to hasten the biodegradation of aromatic hydrocarbons. Thus, understanding interactions among microbes may provide opportunities to further enhance biodegradation of soil-bound organic contaminants.  相似文献   

17.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) is retained against leaching losses in soils principally by sorption to organic matter, but the mechanism of sorption has been a matter of controversy. Conflicting evidence exists for proton transfer, electron transfer, and hydrophobic interactions between atrazine and soil humus, but no data are conclusive. In this paper we add to the database by investigating the role of (i) hydroxyatrazine (6-hydroxy-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and (ii) hydrophobicity in the sorption of atrazine by Brazilian soil humic substances. We demonstrate, apparently for the first time, that hydroxyatrazine readily forms electron-transfer complexes with humic substances. These complexes probably are the cause of the well-known strong adsorption by humic acids and they may be the undetected cause of apparent electron-transfer complexes between soil organic matter and atrazine, whose transformation to the hydroxy form is facile. We also present evidence that supports the important contribution of hydrophobic interactions to the pH-dependent sorption of atrazine by humic substances.  相似文献   

18.
An attempt was made to desulfurize coals by bacterial means. A strain of Thiobacillus ferrooxidans has been found effective in removing pyritic sulfur and sulfate sulfur from coal. The removal of organic sulfur depends on the sulfur containing organic compounds present in coal. Assuming presence of thiophene in coal, a mixed bacterial culture was isolated from soil using dibenzothiophene as the sole source of carbon. These strains proved effective in removing organic sulfur from coal in addition to some pyritic and sulfate sulfur.Coal treated with bacteria shows an improvement in quality. Apart from the reduction of the sulfur contents, the ash contents of the bacteria treated coals are substantially reduced. The coking property remains unaffected by the bacterial treatment.  相似文献   

19.
The Potential Use of Chicken-Drop Micro-Organisms for Oil Spill Remediation   总被引:2,自引:0,他引:2  
An examination of chicken-drop micro-organisms for oil spill remediation is presented in this work. The chicken droppings contained aerobic heterotrophs (1.2×108 CFU g–1), total fungi (3.4×104 CFU g–1) and crude oil (transniger pipeline crude, TNP) degrading bacteria (1.5×106 CFU g–1). The crude oil degraders were identified as species of Micrococcus, Bacillus, Pseudomonas, Enterobacter, Proteus, Klebsiella, Aspergillus, Rhizopus, and Penicillium. Pseudomonas aeruginosa CDB-06 and species of Bacillus CDB-08 and Penicillium CDF-10 degraded the crude oil at exceedingly high rates. Pseuedomonas aeruginosa CDB-06 degraded 65.5 percent of the crude oil after 16 days, while Bacillus sp. CDB-08, and Penicillium sp. CDF-10 degraded 65.3 percent, and 53.3 percent, respectively of the crude oil over the same period. The chicken droppings also had a pH 7.3, 18.5 percent moisture content, 2.3 percent total nitrogen, and 0.5 percent available phosphorus. Addition of oil polluted soil (10 percent (v/w) pollution level) with chicken droppings enhanced degradation of the crude oil in the soil. 68.2 percent of the crude oil was degraded in the soil amended with chicken droppings, whereas only 50.7 percent of the crude oil was degraded in the unamended soil after 16 days. The amendment raised the acidic reaction (pH 5.7) of the oil-polluted soil to alkaline (pH 7.2) within 16 days. Chicken droppings could, therefore, be used in an integrated oil pollution abatement program.  相似文献   

20.
Bacterial reduction of the Se oxyanions selenate [Se(VI)] and selenite [Se(IV)] to elemental selenium [Se0] is an important biological process in removing Se from drainage water. This study was conducted to characterize the molecular diversity of bacterial populations involved in Se reduction of drainage water amended with rice (Oryza sativa L.) straw and also to monitor the bacterial community shifts during the course of the study. Selenate was removed in the drainage water by the bacteria 5 to 6 d after addition of rice straw. Six Se(VI)- and 32 Se(IV)-reducing bacteria were isolated from rice straw containing sterilized drainage water. Three Se(VI)- and two Se(IV)-reducing bacteria were also isolated from the drainage water. Identification of Se(VI)- and Se(IV)-reducing bacteria by 16S rDNA sequence analysis showed a broad phylogenetic diversity in Se-reducing assemblages. Three major phyla (Proteobacteria, Actinobacteria, and Firmicutes) of bacterial domain with numerous classes, orders, and families constituted the Se-reducing bacterial community. We documented changes in the composition of bacterial assemblages in the drainage water amended with rice straw using polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) of 16S rDNA. The Shannon-Weaver index (H') revealed higher bacterial diversity at Day 6 in the sterilized and Day 4 in the non-sterilized drainage water amended with rice straw. The results of this study suggest that rice straw, a good source of carbon and energy, harbors a wide range of bacteria useful in Se reduction and may be used in removing Se from drainage water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号