首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A 2-year field study was carried out to determine the impact of kraft pulp-mill effluents on the fish fauna of a shallow-bay system in north Florida (Apalachee Bay, USA). Offshore areas that received kraft-mill effluents (KME) displayed significant increases in color and turbidity and reductions in (benthic) dissolved oxygen compared to a nearby control area. Estuarine and marsh fish assemblages in areas of acute impact were severely reduced in terms of numbers of individuals (N) and species (S). Offshore areas exposed to varying (chronic) levels of KME were characterized by complex interactions that included seasonal variations of impact. A broad offshore area showed reductions in numbers of individuals and species taken per month. However, the cumulative (annual) number of species taken was the same for polluted and unpolluted (control) areas due to a recruitment of relatively rare species in the areas of impact. Such polluted areas showed decreased dominance as well as qualitative differences in species composition compared to control areas. Inshore bay stations that were most severely affected by KME were dominated by the bay anchovy, Anchoa mitchilli. While species richness and species diversity were lower at the highly stressed stations, in other outlying areas of moderate impact (reduced N and S) there were no reductions of such parameters compared to control areas. Thus, species diversity was not an indicator of pollution per se, and was useful only when taken in conjunction with various other parameters. Transition areas (between polluted and unpolluted portions of the bay) showed substantial (although periodic) increases in N, S, and species diversity. Equitability indices were unchanged in polluted portions of the bay. In general, the effects of KME on offshore fish assemblages appeared to be due to a complex combination of habitat alteration, reduced benthic productivity, and individual behavioral reactions. The alterations of fish assemblages were compared to other studies in this area on benthic macrophytes and invertebrates in an effort to assess the usefulness of various indices in studies on the long-term effects of pollution on estuarine and coastal systems. It was found that kraft pulp-mill effluents had a pronounced effect on the benthic standing crop of plants and animals, but that intensive sampling over prolonged periods of time was necessary for an adequate assessment of the problem. Overall, there were some significant changes in the biota such as reduced dominance and productivity in polluted areas that were similar for the various types of organisms sampled.  相似文献   

2.
Partitioning of the food resources by two coexisting pufferfishes (Sphoeroides spengleri and S. testudineus) from Biscayne Bay, Florida, USA, was investigated. Gut contents from 453 bandtail and 339 checkered puffers were analyzed. The diets of both species consisted of a variety of benthic prey, but only crustaceans and molluscs were important prey groups. While differences were found in the proportions of general prey categories eaten by these fishes, both species consumed substantial quantities of brachyuran crabs, bivalves, and gastropods. Specific identification of the prey items within these three food categories revealed additional differences in prey between the two puffer species. This partitioning of the food resources by bandtail and checkered puffers was found between both species overall, between overlapping size ranges, and between both species' most abundant size group. Differences in food habits between these two fishes illustrate that congeners with virtually identical mouth structure and complete spatial overlap can significantly partition the food resources.Contribution No. 78-58M from the U.S. Department of Commerce, NOAA, National Marine Fisheries Service, Southeast Fisheries Center, Miami Laboratory, Miami, Florida, USA.  相似文献   

3.
A new genus, Meyersia, and five new species of the nematode family Oncholaimidae, are described from Biscayne Bay, Florida, and environs, viz., Metoncholaimus pelor n. sp., M. amplus n. sp., Meyersia major n. gen., n. sp., M. minor n. sp., and Filoncholaimus prolatus n. sp. Also included in the genus Meyersia are Adoncholaimus bandaenis Kreis, 1932 and A. meridionalis Kreis, 1932.  相似文献   

4.
Parasitism and ecological relationships among deep-sea benthic fishes   总被引:4,自引:0,他引:4  
We have studied the metazoan parasite fauna of 52 species of deep-living benthic fishes from depths of 53 to 5000m off the New York Bight (39–49°N; 70–72°W). 17144 parasites were recovered from 1712 fishes. The infestation rate was 80%, with an average of 12.5 worms per host. Percentage occurrence by group among all fishes was Monogenea 12.9%, Digenea 48%, Cestoda 22.1%, Nematoda 54.5%, Acanthocephala 3.8%, and Copepoda 4.5%. Differing composition of the parasite fauna in different fish species reflects differences in diet. Specialized feeders are rather distinct; generalized feeders, which predominate, show overlaps in parasite fauna. In individual species, changes in diet with growth are reflected in changes in the parasite fauna. Infestation rate is directly related to abundance of the free-living fauna; hence, fish from within the submarine canyon are more heavily infested than those living without. Although it contains fewer families and genera than shallow faunas, the deep-sea parasite fauna is not extremely unusual in terms of its abundance, diversity, or host specificity. At the greatest depths, parasite abundance and diversity dramatically decline.  相似文献   

5.
Juveniles of the burrowing amphiurid Ophiophragmus filograneus from Tampa Bay, Florida (USA) exhibit a growth pattern unreported in the ophiuroid literature. Two nonadjacent arms grow at a greater rate than the other three arms. This phenomenon might be a developmental adaptation to avoid salinity and temperature fluctuations in surface waters of the shallow-water environment which O. filograneus inhabits. It is proposed that concentration of growth into 2 of the 5 arms permits earlier descent of the disc into the substratum with continued ability to feed on the surface with the arm tips. Larger specimens show a gradual equalization of arm lengths. Changes in growth rates and cropping of the longer arms by breakage and predation might account for such eventual equalization.  相似文献   

6.
The occurrence of chitinase in the stomach contents of Enophrys bison and Platichthys stellatus was investigated. The highest chitinase activity and the greatest percentage of chitinoclastic bacteria in relation to the total bacterial flora were associated with fish whose stomach content was composed primarily of chitinous animals. Stomach contents lacking visible chitin possessed low or no detectable levels of chitinase activity and few chitinoclastic bacteria. Juvenile E. bison treated with chloramphenicol to remove their indigenous bacterial flora had no detectable level of chitinase in their stomach contents while non-treated juveniles showed inducible chitinase activity, indicating the bacterial origin for the chitinase.Published as Technical Paper No. 4435, Oregon Agricultural Experiment Station. This research was supported by NIH training grant 5TO1 GM-00704 and NSF grant DES73-06611 AO2.  相似文献   

7.
Epifaunal crustaceans on turtlegrass (Thalassia testudinum) and five dominant macroalgae (Anadyomene stellata, Digenia simplex, Halimeda incrassata, Laurencia poitei and Penicillus lamourouxii) were quantitatively sampled bimonthly over a one-year period from September 1979 to September 1980 in a subtropical seagrass meadow in Apalachee Bay, Florida (northeastern Gulf of Mexico). These plant species exhibited a wide range of morphologies, with surface area-to-biomass ratios differing by over 2.5 times. A similar suite of crustaceans occurred on all macrophytes despite differences in shape or architecture among plant species. Relative abundances of many crustaceans, however, varied among plant hosts. Similarity analysis indicated that the epifaunal associates of T. testudinum were distinct from those of the macroalgae. Species richness was generally higher on turtlegrass than on any of the macroalgae. Abundances of total crustaceans per plant biomass or per plant surface area, on the other hand, were greater on all macroalgal species compared to the seagrass. Abundances (per plant biomass or plant surface area) of 14 of the 16 numerically dominant epifaunal species differed significantly among macrophytes. Twelve of the 16 species had greater abundance on one or more macroalgae, while only two species were more abundant on T. testudinum. Almost half of the dominant species had greatest abundances on the branching red alga L. poitei. Although abundances per plant biomass and plant surface area were greater on macroalgae relative to turtlegrass, densities (individuals per meter square of bottom) of animals associated with T. testudinum were significantly greater than those associated with macroalgae, primarily because of the greater abundance of turtlegrass in the grass bed. Both surface area-to-biomass ratios and degree of branching were poorly correlated with epifaunal abundance and number of species. Neither structural feature is an adequate predictor of faunal abundance and species richness among plant species, especially when macrophytes with very different morphologies are compared.  相似文献   

8.
A 14-month study was carried out to determine the impact of kraft-mill effluents on the offshore benthic macrophyte distribution in a shallow north Florida Bay (USA). A polluted river drainage system was compared to an adjoining (unpolluted) one. The affected area was characterized by elevated levels of color and turbidity. Inshore areas associated with high levels of KME were characterized by severely reduced benthic macrophyte biomass, reduced numbers of species/unit area, and altered species composition when compared to control stations. Areas of chronic impact also had reduced levels of biomass, although the total number of species taken were not significantly different from the controls. In polluted areas, red and brown algae were proportionately more abundant than chlorophytes and spermatophytes. Dominance generally was reduced in areas of the Bay affected by KME. Except for areas of acute impact, there was no significant difference in species diversity (H) between polluted and unpolluted portions of the Bay. There were uniform increases in the total number of species on either side of the affected drainage system. Such areas were considered to be transition zones between the polluted and unpolluted parts of Apalachee Bay. Benthic macrophyte distribution, in terms of biomass and species (community) composition, was considered an important indicator of the impact of KME on the shallow coastal systems in question. The pattern of macrophyte species composition reflected various water-quality parameters. Species normally inhabiting deeper water were found in areas of increased turbidity and color. It was postulated that reduction of normal dominants such as Thalassia testudinum and Halimeda incrassata allowed the colonization of such areas by opportunistic species. This would explain the maintenance of comparable (total) numbers of species in polluted areas and the lack of effect of KME on species diversity even though biomass was severely restricted. These parameters were analogous to the epibenthic fish distribution in the respective drainage areas. Near-shore coastal systems in Apalachee Bay thus were affected by gradients in water quality in addition to natural (seasonal) fluctuations in key physical and chemical parameters. The benthic plant assemblages reflected variations in dominance, the occurrence of opportunistic species, and ecological diversity that resulted in a continuum of disturbance phenomena ranging from sparsely distributed groups in grossly polluted systems to well developed plant assemblages in areas that remain unaffected by KME.  相似文献   

9.
The male of Laimella longicauda Cobb, 1920 is described as having short arcuate spicules and a gubernaculum with caudally directed apophyses. The genus Paracomesoma Schuurmans Stekhoven, 1950 is reinstated to accommodate species of Laimella sensu Chitwood, 1937. Paramesonchium n. gen. is proposed to accommodate Laimella (?) serialis Wieser, 1954. Actarjania n. gen. (type species A. splendens n. sp.) differs from Sabatieria in having irregular lateral rows of longitudinal punctations and short arcuate spicules with distinctive distal extremities.  相似文献   

10.
Changes in hydrolytic, respiratory,catabolic and lipid biosynthetic activities depend at least in part on successional changes in the microfloral populations of allochthonous plant litter incubated in a semi-tropical estuary. Initial colonization is by populations which have a high content of muramic acid relative to the adenosine triphosphate (ATP) and which are progressively displaced by a microflora with a lower ratio of muramic acid to ATP. Scanning electron micrography of the plant-litter microflora shows a succession of forms, with an initial bacterial colonization and its progressive displacement by more complex forms. Estimates of the microbial mass and the rates of phospholipid synthesis suggest that the detrital microflora has a relatively slow growth rate compared to its growth potential.  相似文献   

11.
12.
Heterotrophic nitrogen-fixation (acetylene reduction) was measured during decomposition (under dark conditions) of Rhizophora mangle L. and Avicennia germinans (L.) Stearn leaf litter. Nitrogen-fixation rates in leaf litter increased following 24 d incubation, then decreased after ≃44 d for both species. Maximum rates of 66.2 and 64.6 nmol C2H4 g−1 dry wt h−1 were reached by R. mangle and A. germinans leaf litter, respectively. Higher fixation rates of leaf litter were associated with an increase in water content and sediment particles on leaf surfaces of both species. Rates of nitrogen fixation by diazotrophs attached to sediment particles were not significantly different from zero. With additions of d-glucose, ethylene production rates increased by factors of 625-, 34- and 7-fold for sediment, R. mangle and A.␣germinans leaf litter, respectively, compared to rates prior to enrichment. These organically enhanced rates of nitrogen fixation on leaves could be accounted for by increased activity associated with attached sediment particles and not the leaf material. Total phenolics [reported as tannic acid equivalent (TAE) units] decreased nitrogen-fixation rates when added to d-glucose-enriched sediment at >20 mg TAE l−1. Phenolic compounds could explain the initial lag in rates of nitrogen fixation during leaf-litter decomposition of R. mangle (initial content of 110.8 mg TAE g−1 dry wt), but not of A. germinans (initial content of 23.4 mg TAE g−1 dry wt). The higher phenolic content and reportedly lower carbon substrate of R. mangle did not result in species-specific differences in either the magnitude or temporal pattern of nitrogen fixation compared to A. germinans leaf litter. We conclude that the availability of organic substrates leached from the leaf litter along with colonization by the heterotrophic diazotrophs (as indicated by sediment accumulation) controls nitrogen-fixation rates in a similar manner in the leaf litter of both species. Received: 8 August 1997 / Accepted: 4 December 1997  相似文献   

13.
For marine organisms, decoupling between the planktonic larval stage and the benthic-associated juvenile stage can lead to variable patterns of population replenishment, which have the potential to influence the effectiveness of marine reserves. We measured spatial and temporal variability in larval supply and recruitment of fishes to coral reefs of different protection levels and tested whether protection level influenced the relationship between supply and recruitment. We sampled pre-settlement larvae and newly settled recruits from four reefs (two reserves and two non-reserves) in the Florida Keys National Marine Sanctuary, USA. Replicate point measures of larval supply over 14 months and 17 monthly measurements of recruitment varied significantly among months and sites. Sites with the same protection level had significantly different patterns of larval supply as well as larval and recruit diversity, but recruitment magnitude differed only by protection level, where densities were greater at reserves. Differences in larval supply among sites included two particularly large peaks in larval abundance at one site, possibly associated with the observed passage of small-scale oceanographic features. To examine whether relationships between larval supply and recruitment varied by protection level, we selected one species that was present in both the light trap samples and the monthly recruitment surveys. Recruitment of the bicolor damselfish Stegastes partitus was significantly and positively related to larval supply at three of the four sites thus, protection level did not influence this linkage. Since local variability among sites can lead to spatial differences in population replenishment, characterization of larval supply and recruitment to potential marine reserve sites may help to identify optimal locations in a region and contribute to more effective reserve design.  相似文献   

14.
Pectinaria gouldii (Verrill), which lives for 1 year in Barnegat Bay, New Jersey, constructs over its lifetime a conical tube of increasingly large sand grains, regardless of surrounding sediment characteristics. However, the rate of increase of mean grain size of the tube and the population density of the worm vary with sediment type. The distribution of this species is limited by sediment composition. Worms of equal length will always have equal anterior tube apertures, although the thickness of the tube walls may be unequal. Tube surface-area, worm dry weight, and tube weight all increase as a power function of tube length. The conical shape and increasing mass of the tube impose an upper limit to worm growth, but do not interfere with worm mobility.  相似文献   

15.
Prey selection was investigated in wild, resident common bottlenose dolphins, Tursiops truncatus, during the summer months in Sarasota Bay, Florida, USA. Stomach content analyses of 15 dolphins with extensive sighting histories and well-documented distributions were used to determine prey use. Prey availability was assessed by purse seine surveys. We compared the relative abundances of prey available to estimates of prey use at closely matching spatial and temporal scales. G-tests determined that dolphins in this study significantly selected for prey at the species, family, and soniferous/non-soniferous prey levels (G adj  = 753.98–1,775.93, df = 1–21, p ≤ 0.01). While comprising only 6.3% of the total available prey, soniferous fishes accounted for 51.9% of the total prey consumed. Manly’s standardized forage ratios and 95% Bonferroni confidence intervals determined significant positive selection for soniferous prey and against non-soniferous prey (βS = 0.9461 vs. βNS = 0.0539). Dolphins selected against Gerridae, Clupeidae, and Sparidae (β ≤ 0.0014), as well as against all the species within those families (β ≤ 0.0190). It is likely that passive listening for soniferous prey provides an ecological or energetic advantage to cetaceans utilizing this specific foraging technique.  相似文献   

16.
Winter mortality has been hypothesized to select for large body size in young-of-the-year (YOY) fishes, yet substantiation of winter mortality and its cause(s) are available for few estuarine or marine species. We examined seasonal length distributions of wild populations of four common marine species, black sea bass (Centropristis striata), tautog (Tautoga onitis), cunner (Tautogolabrus adspersus), and smallmouth flounder (Etropus microstomus), and mortality (i.e., frequency of death), growth, and behavior of their YOY in the laboratory at ambient winter temperatures (mean 7°C, range 2-13°C) during a 135-day period (December 1992 through mid-April 1993) to establish potential causes of their mortality in the field. Young-of-the-year black sea bass experienced 100% mortality when water temperatures decreased to 2-3°C in February, emphasizing the importance of winter emigration from estuaries in this southern species. The low mortality of two labrid species, YOY tautog (14%) and YOY cunner (3%), was consistent with their northern distribution and year-round occurrence in estuarine and nearshore coastal waters. Laboratory mortality of YOY smallmouth flounder (33%) was higher for small (<35 mm total length) fish, suggesting that this small species may experience high winter mortality in estuaries and nearshore coastal waters. Seasonal differences in fish length result potentially from several mechanisms (e.g., mortality and/or migration) that are difficult to assess, but our laboratory experiments suggest that seasonal temperature changes cause size-specific mortality of YOY smallmouth flounder and offshore migration of YOY black sea bass.  相似文献   

17.
Proliferation of macroalgal mats is a frequent consequence of nutrient-driven eutrophication in shallow, photic coastal marine ecosystems. These macroalgae have the potential to significantly modify water quality, plankton productivity, nutrient cycling, and dissolved oxygen dynamics. We developed a model for Ulva lactuca and Gracilaria tikvahiae in Greenwich Bay, RI (USA), a shallow sub-estuary of Narragansett Bay, as part of a larger estuarine ecosystem model. The model predicts the biomass of both species in units of carbon, nitrogen, and phosphorus as a function of primary production, respiration, grazing, decay, and physical exchange, with particular attention to the effects of biomass layering on light attenuation and suppression of metabolic rates. The model successfully reproduced the magnitude and seasonal cycle of area-weighted and peak biomass in Greenwich Bay along with tissue C:N ratios, and highlighted the importance of grazing and inclusion of self-limitation primarily in the form of self-shading to overcome an order of magnitude difference in rates of production and respiration. Inclusion of luxury nutrient uptake demonstrated the importance of internal nutrient storage in fueling production when nutrients are limiting. Macroalgae were predicted to contribute a small fraction of total system primary production and their removal had little effect on predicted water quality. Despite a lack of data for calibration and a fair amount of sensitivity to individual parameter values, which highlights the need for further autecological studies to constrain formulations, the model successfully predicted macroalgal biomass dynamics and their role in ecosystem functioning. Our formulations should be exportable to other temperate systems where macroalgae occur in abundance.  相似文献   

18.
In October 2000, a mass mortality of blacktip sharks (Carcharhinus limbatus) and Atlantic sharpnose sharks (Rhizoprionodon terraenovae) in northwest Florida occurred in conjunction with a Karenia brevis red tide bloom. Before this incident, no information existed on red tide-induced shark mortalities or baseline brevetoxin levels in sharks and rays from red tide-endemic areas. We report here that brevetoxin accumulation in live and red tide-killed elasmobranchs is common during K. brevis blooms and non-bloom periods. Strong relationships were found between the frequency of red tide blooms and the average brevetoxin concentrations in elasmobranch tissues. The presence of brevetoxins in Atlantic coast sharks in the absence of documented K. brevis blooms may suggest that blooms are occurring in areas that are not well monitored. Although red tide-related shark mortalities are rarely observed, the presence of brevetoxins in shark embryos raises questions about the effects these toxins may have on the reproductive success of sharks.  相似文献   

19.
Like many resources in the Chesapeake Bay region of the U.S., many waterbird nesting populations have suffered over the past three to four decades. In this study, historic information for the entire Bay and recent results from the Tangier Sound region were evaluated to illustrate patterns of island erosion and habitat loss for 19 breeding species of waterbirds. Aerial imagery and field data collected in the nesting season were the primary sources of data. From 1993/1994 to 2007/2008, a group of 15 islands in Tangier Sound, Virginia were reduced by 21% in area, as most of their small dunes and associated vegetation and forest cover were lost to increased washovers. Concurrently, nesting American black ducks (Anas rubripes) declined by 66% , wading birds (herons-egrets) by 51%, gulls by 72%, common terns (Sterna hirundo) by 96% and black skimmers (Rynchops niger) by about 70% in this complex. The declines noted at the larger Bay-wide scale suggest that this study area maybe symptomatic of a systemic limitation of nesting habitat for these species. The island losses noted in the Chesapeake have also been noted in other Atlantic U.S. coastal states. Stabilization and/or restoration of at least some of the rapidly eroding islands at key coastal areas are critical to help sustain waterbird communities.  相似文献   

20.
Prey selection was investigated in wild, resident common bottlenose dolphins, Tursiops truncatus, during the summer months in Sarasota Bay, Florida, USA. Stomach content analyses of 15 dolphins with extensive sighting histories and well-documented distributions were used to determine prey use. Prey availability was assessed by purse seine surveys. We compared the relative abundances of prey available to estimates of prey use at closely matching spatial and temporal scales. G-tests determined that dolphins in this study significantly selected for prey at the species, family, and soniferous/non-soniferous prey levels (G adj  = 753.98–1,775.93, df = 1–21, p ≤ 0.01). While comprising only 6.3% of the total available prey, soniferous fishes accounted for 51.9% of the total prey consumed. Manly’s standardized forage ratios and 95% Bonferroni confidence intervals determined significant positive selection for soniferous prey and against non-soniferous prey (βS = 0.9461 vs. βNS = 0.0539). Dolphins selected against Gerridae, Clupeidae, and Sparidae (β ≤ 0.0014), as well as against all the species within those families (β ≤ 0.0190). It is likely that passive listening for soniferous prey provides an ecological or energetic advantage to cetaceans utilizing this specific foraging technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号